next up previous
Next: Bibliography Up: Sturmian Bound-state and Scattering Previous: 3 Input Specifications

Subsections

4 File Specifications

Here, the notation (R;*) means a real variable with free format input

FILE fpot.spec

title(1)
(S;a80) Descriptive information for echoing to standard output
ryev,coulcn
(R,R;*)
Values of $\hbar^2/2m$ and e2
roin,rostep,nrooo,ppr0,ppdr,nrpp,rinner
(R,R,I,R,R,I,R;*)
Coupling potentials in mel file give at nrooo radial points starting at roin and then with steps of rostep.
Forbidden states in occ file give at nrpp radial points starting at ppr0 and then with steps of ppdr. Define rppmax = (nrpp-1)*ppdr+ppr0.
The forbidden states are assumed to form an orthonormal set up to radius rinner: rmax should be greater than or equal to rinner = rppmax.
nbody,scent,lxtra,ncoup,ipmax,mfad,symm,details,npots,mstates,nmoms
(I,R,4*I,L,L,3*I;*)
nbody = A, the number of bodies, and
scent = $\Delta$ (usually (3A-6)/2).
lxtra = no. of quantum numbers in the set $\gamma$.
ncoup = no. of specifications of coupling orders.
ipmax=$\Lambda+1$, the maximum inverse power in asymptotic region.
mfad = number of Faddeev components.
symm if couplings symmetric.
details if details of the A bodies to be read below.
npots = number of potential sets in the mel file.
mstates = upper bound to all the npstates(:) values below.
nmoms = number of moment-matrices to read from mel file.
qnum(1:lxtra+1)
(S;30a3)
Names of the quantum numbers, beginning with qnum(1)='K' or 'L'.
For nbody=2, the spbe transition subroutine assumes
the coupling order L, 2*s, 2*j, 2*I with lxtra$\geq$3;
For nbody=3, the belmag, conasf, conden and consf transition subroutines assume
the coupling order K, L, S, L1, L2, Jn, 2*I, 2*S1, 2*S2, J with lxtra$\geq$6.
mult(1:lxtra+1),jgt
(I;30i3) Multiplying factors (1 or 2) for quantum numbers to be integer.
jgt = index to quantum number of total spin.
((cupord(i,j),i=1,3),j=1,ncoup)
(I;20i3)
For each coupling order a+b = c, the indices of quantum nunbers a, b and c.
If details:
 

mass(nbody),charge(nbody),radius(nbody)
(R;*)
Masses, charges and point-nucleon radii of the nbody bodies.
Next line repeated for ib=1,nbody:
(name(ib),npstates(ib),corek(ib),Qmom(ib),Mmom(ib),
 
(energy(i,ib),nparity(i,ib),i=1,npstates(ib))
(S,I,3*R, (R,I); a8,i3, f4.1,2f10.4, 10(f8.4,i4))
For each body, give its name, number of states, K-projection for any rotational model, intrinsic quadrupole moment Q0, magnetic moment. Then, for each state, give excitation energy and parity.
(id(i),iso(i),i=1,npair)
((L,R);*)
For npair = nbody*(nbody-1)/2 possible pairs of bodies, if id, the isospin state iso.
((nucl(j,i),j=1,nbody),i=1,mfad)
(R;*)
For each of the mfad Faddeev components, the ib index that ichl (later) will refer to.

Remaining lines repeated until end of file for each $J^\pi$ set:
 
title(2)
(S;a80) Descriptive information for each $J^\pi$ set
jj2,npty,nchan,mintl,xla,escatt
(4*I,R,R; 4i5,f10.5,e12.4)
2J, parity (+1 or -1), number of channels nchan, any potential variation parameter xla.
mintl=number of elastic channels.
escatt=scattering energy (c.m.) to, if non-zero, override ebeg etc.



If details:

(kfad(i),i=1,nchan)
(I,*) Number of Faddeev component (1..mfad) for each channel.



If details: Next line for ib=1,nbody:

(ichl(i,IB),i=1,nchan)
(I,*) Index to states of each body in each channel.
(lchl(i),i=1,nchan)
(I,*)
Orbital angular momentum K. The centrifugal barrier will use ${\cal L} = K + {\tt scent}$.



Next line for ix=1,lxtra:

(lxtr(ix,i),i=1,nchan)
(I,*)
Extra quantum numbers in the set $\gamma$, multiplied by mult(ix+1) so as to be integers.



Next line if mintl>0:

(initl(i),i=1,mintl)
(I,*)
Numbers of the mintl elastic channels for output to file 73 in FRESCO format.
nsrc,nkill
(I,I;*)
nsrc = number of forbidden-state projection operators in occ file.
If nsrc < 0, assume compact format in the occ file (see below).
nkill = number of Pauli-forbidden energy surfaces (not implemented).

FILE fpot.mel (binary: real*8)

If symm:
 
For I1=1,nchan, For I2=I1,nchan, For np=1,npots,
    read (vk(I1,I2,ir,np),ir=1,nrooo), (cf(I1,I2,ip,np),ip=1,ipmax)
If not symm:
 
For I1=1,nchan, For I2=1,nchan, For np=1,npots,
    read (vk(I1,I2,ir,np),ir=1,nrooo), (cf(I1,I2,ip,np),ip=1,ipmax)

For I1=1,nchan, read (wn1(I1,I2),I2=1,nchan)
read (mp12(I2),I2=1,nchan)
All cases:
 
For im=1,nmom, for I1=1,nchan,
read (moms(I1,I2,im),I2=1,nchan)

This file gives the coupling potentials, for $r = {\tt roin+(ir-1)*rostep}$,

\begin{displaymath}
V_{ij}(r) = \sum_{\tt np=1}^{\tt npots} ~ {\tt vk}(i,j,{\tt ir,np) ~ potcoef(np)}
\end{displaymath} (52)

up to the radius roin+(nrooo-1)*rostep. Beyond this point, the couplings are found from the asymptotic expansion
\begin{displaymath}
V_{ij}(r) = \sum_{\nu=1}^{\tt ipmax} \left \{
\sum_{\tt np=1...
...~ {\tt cf({\it i,j},\nu,np) ~ potcoef(np)} \right \} r^{-\nu}.
\end{displaymath} (53)

Any Coulomb potentials must be explicitly included in the vk values, and as $\nu$=1 terms in the asymptotic expansions. Off-diagonal Coulomb monopoles are ignored.

The moms(i,j,im) arrays contains the matrix elements of the im=1,nmom moments to be evaluated for all examined bound states.

FILE fpot.occ (binary: real*8, default integer)

The |nsrc| forbidden states $\{ \tilde{w}_{mn}\}$ of eqn. (19) are read in:

If nsrc > 0:
 
read ((WFfor(i,j),j=1,nrpp),i=1,nchan)

If nsrc < 0:
 
read MCHP,jmin,jmax,(chans(i),i=1,MCHP), ((WFfor(chans(i),j),j=jmin,jmax),i=1,MCHP)
Read the number of non-zero channels MCHP, the minimum and maximum radial indices jmin,jmax, the channel numbers chans of these, and then the forbidden state wave functions. The other channels are set to zero.
and used to make projection operator P by eqn. (19). The forbidden states are assumed to be orthogonal, but they are renormalised to unity in the basis used in sturmxx.

List of all output and temporary files

file number Use In subroutine:
1 Buttle corrections BASIS or RMATRIX
2 Trace BASIS etc
3 Trace information XLR (many routines)
4 Misc output BELMAG,CONSF,BASIS etc
5,6 STANDARD INPUT, OUTPUT many places
8 Scattering wave functions SCATTERING
9 Diagonal scattering wave functions SCATTERING
10 B(E1) output cross sections BELMAG
11 gs wave functions PROBABILITY
12 READ matrix elements (mel) READCC
13 READ channel specifications (spec) READCC
14 READ orthogonality conditions (occ) READCC
15 Eigenenergies of internal Hamiltonian PROBABILITY
17 B(E1) discretised output BELMAG
19 gs+scatt wave functions (binary) SCATTERING
20 READ gs expansion coefficients (binary) STURMHH
21 gs expansion coefficients (binary) STURMHH
22 All expansion coefficients PROBABILITY
23 Norms of internal eigenstates ENORM
24 B(I0) BELMAG
25 Summed strength functions CONASF
26 Norms of internal eigenstates ENORM
27 Scattering phases TMAT and TMATP
28 Strength functions CONSF
29 Eigenphases TMATT
30 Interior norms SCATTER
31 Buttle corrections BASIS or RMATRIX
32 B(I0) discrete BELMAG
33 Buttle corrections BASIS or RMATRIX
36 READ Average sturmian potential BASIS
37 Average probabilities of sturmians PROBABILITY
38 Average sturmian potential PROBABILITY
40 Sturmian potential used BASIS
41 Eigenpotentials BASIS
43 Determinants in gs search BOUND
44 Wronskian errors WRONSK in XLR
48 gs wave function (binary) PROBABILITY
49 Forbidden state norms MAKEMAT
50+l B(El) responses SPBE
60 Propagated wfns LWFPRP
69 Wronskian errors in bs wfns LWFPRP
idiscr = 71 LW diagonalisations SLWPOT (scratch)
idiscr+1 = 72 Global propagators LWFPRPO (scratch)
73 S-matrix elements (binary) TMAT
77 READ gs wave function READCC
78 Save gs wave function PROBABILITY
79 Wronskian errors, R-matrix norm ASYMS
80+i Valence Strength functions for i=LSJ CONASF
92 E1 transition integrands BELMAG
105,106 External wave functions (real,imag) ASYMO
110 B(E1) output amplitudes BELMAG
111,112 External wave functions (real,imag) SCATTERING
117 B(E1) discretised amplitudes BELMAG
file number Use In subroutine:
118 Non-real energy surfaces SLWPOT/VDIAG
120 Adiabatic energy surfaces SLWPOT/VDIAG
121 Adiabatic energy surfaces *r2 SLWPOT/VDIAG
128 k/tan(Scattering phases) TMAT and TMATP
150 R-matrix & Buttle parameters SCATTERING
152 Coefficients of asymptotic wfn for gs BNDBS
153 Log10 of asymptotic wfn for gs BNDBS
158 Valence transition amplitudes CONASF
159 Core transition amplitudes CONACSF
160+c Wave functions of basis states in ch. c BASIS
170+i Integrated transition densities CONDEN
180+i Transition densities for i=LSJ CONDEN
190+i Core Integrated transition densities CONDEN
200+i Core Transition densities for i=LSJ CONDEN
210 Summed Core Strength functions CONACSF
210+i Core Strength functions for i=LSJ CONACSF
nftt T-matrix (binary) TMATT,TMATP


next up previous
Next: Bibliography Up: Sturmian Bound-state and Scattering Previous: 3 Input Specifications
Prof Ian Thompson 2004-10-19