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Abstract

This paper describes the components and methods of a comprehensive code for coupled
reaction channels calculations in nuclear physics. Procedures are described which are com-
mon to the modelling of reactions induced by light and medium-mass ions, and which are
sufficient to calculate the effects of successive processes to any order.

1 Introduction

When two nuclei approach each other they may interact in several ways. In the first approxi-
mation they may be regarded as clusters of nucleons, and their primary interaction results from
the inter-nucleon two-body force, which has an average effect found by folding the force over
the internal configurations of the two clusters. However, these configurations are not static, and
one or more rearrangement processes may occur during the time in which nuclei are together
during a collision. As well as elastic scattering, with the projectile and the target remaining in
their ground states, various kinds of non-elastic interactions may have time to operate.

Inelastic excitations may occur, for example when one or both of the nuclei are deformed or
deformable, with the result that higher-energy states of the nuclei may become populated.
Single-particle excitations are another kind of inelastic process, when a particle in one of the
nuclei is excited during the reaction from its initial bound state to another state which may be
bound or unbound. Nucleons may also transfer from nucleus to the other, either singly, or as
the simultaneous transfer of two nucleons as a particle cluster.

In this paper I will consider some mathematical models sufficient to describe these processes, and
the principal interest will be in calculating the effects of their occurring successively as multi-
step processes. One-step processes have been traditional described with the Distorted Wave
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Born Approximation (DWBA), and although second-order DWBA expressions can be written
down and computed, I shall be mainly concerned with coupled-channels formalisms, in order to
predict the effects of multi-step processes to any or all orders.

The present work is in the framework of Direct Reaction theory, which attempts to solve the
Schrödinger equation for a specific model of the components thought to be important in the
reaction, and of their interaction potentials. In direct reaction theories, the phases describing the
coherence of all components of the wave function are coherently maintained, and the potentials
typically include imaginary components to model how flux is lost from the channels of the
model to other channels. By contrast, a theory of compound-nucleus processes would make
approximations as to the statistical distribution of the inelastic excitations. Direct reaction
theory would describe these effects with an imaginary potential, with the argument that because
the compound nucleus channels are incoherent with respect to each other, their effects back on
the direct-reaction channels are also incoherent, and may hence be represented as a statistical
loss of flux that occurs when the nuclei overlap each other to any significant extent.

Comprehensive accounts of the physical assumptions, methods and results of direct reaction
theory is given in the papers by Tamura et al. [2], and in the books by Austern [3] and Satchler
[33]. The aim of the present paper is to show how a large subset of the direct reaction mechanisms
can be modelled in a general purpose computer program. For definiteness, I am following the
methods used in the recent code FRESCO, while also mentioning, where appropriate, additional
features that could well be included within its framework. Brief descriptions will also be given
of alternative methods, and the relative merits of the different procedures will be discussed.

The code of ref.[34] has not been developed to include any special treatment of the long-range
Coulomb mechanisms that are significant when heavy ions are incident on strongly-deformed
nuclei. For methods of dealing with these processes efficiently, the reader is referred to refs.
[35], [36], [4], and [5], [37].

The organisation of this paper is as follows. Section 2 will give a derivation of the coupled reaction
channels (CRC) equations within the framework of the Feshbach formalism for direct reactions,
and show how one-step and two-step DWBA (etc.) are special cases of the CRC equations.
In both the CRC and DWBA formalisms, particular attention is paid to the treatment of the
so-called ‘non-orthogonality terms’ which arise with couplings between different mass partitions.

The wave functions needed to specify scattering states and nuclear eigenstates are given in section
3. Single-nucleon wave functions are defined for both bound and unbound energies, and a method
for solving the coupled-channels bound state eigen-problem is presented. Two-nucleon wave
functions are described in both the centre-of-mass and independent-radii coordinates. Finally,
the formulae are given for calculating the observable cross sections and polarisations in terms of
the S-matrix elements of the scattering wave functions.

Section 4 specifies some of the different kinds of potentials that exist between nuclei, or can
couple together the excited states of a single nucleus because of the interaction with its reaction
partner. Details of the rotational model, single-particle excitations and particle transfers are
given.

The methods used to solve the CRC equations are described in section 5, along with the pro-
cedures for calculating the transfer form factors in terms of a two-dimensional kernel func-
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tion. Appendix A defines some of the notation and phase conventions used, while Appendix
B summarises the more widely-known coupled-channels codes which have been written to solve
problems in nuclear physics.

2 Coupled Reaction Channels Formalism

The coupled reaction channels (CRC) model of direct reactions in nuclear physics proceeds
by constructing a model of the system wave function, and solving Schrödinger’s equation as
accurately as possible within that model space. The model used here projects the complete
wave function Ψ onto a product φi ≡ φip ∗ φit of projectile and target states with a wave
function ψi(Ri) describing their relative motion:

PΨ ≡ Ψ =
N∑
i

φiψi(Ri) (1)

The basis states φip and φit can be bound states of their respective nuclei, or they may be discrete
representations of continuum levels. In the former case we have a ‘bound state approximation’,
and in the second case we have a ‘coupled discrete continuum channels’ [39, 40] (CDCC) ap-
proximation. The states φi can be in different mass partitions, or they can be different excited
states of the projectile and/or the target in any one of the partitions. What is essential to the
CRC framework is that there be a finite set (N say) of square-integrable basis states, as this
leads to a finite set of equations coupling the channel wave functions ψi(Ri) as unknowns.

For a complete Hamitonian H and total energy E, Schrödinger’s equation [H−E]Ψ = 0 becomes
[H− E]Ψ = 0 in the model space with [6]

H = PHP − PHQ 1
QHQ− E − iε

QHP, (2)

where Q ≡ 1 − P and ε is a positive infinitesimal quantity whose presence ensures that the
excluded channels have a time-retarded propagator, and hence only remove flux from the model
space. The second term as a whole describes the effects of the excluded channels on the model
subspace PΨ. These effects could be, for example, from compound nucleus formation, which
we have excluded from explicit consideration within direct reaction theory. In the absence
of detailled knowledge of these effects, we construct our model Hamiltonian H using effective
potentials which we believe approximate (in some average manner) the processes described by
equation (2). The effective potentials will often be optical potentials with real and imaginary
components fitted to some simpler kinds of reactions, and the effects of compound nucleus
formation on these potentials is to contribute to their imaginary component.

The model Hamiltonian H for the CRC system can now be projected onto the individual basis
states φi. If Ei is the asymptotic kinetic energy in the i’th channel, then the channel-projected
Hamiltonian Hi satisfies

Hi − Ei = 〈φi|H − E|φi〉 (3)

and will be composed of a kinetic energy term and a diagonal optical potential. The ‘interaction
potential’ Vi is then defined to be everything in H not included in Hi, so

Hi − Ei + Vi = H− E. (4)
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This construction gives Vi which have vanishing diagonal matrix elements 〈φi|Vi|φi〉 = 0.

2.1 Coupled Equation Set for N bound state pairs

If we take the model Schrödinger’s equation [H − E]Ψ = 0, and project separately onto the
different basis states φi, we derive the set of equations

[Ei −Hi]ψi(Ri) =
∑
j 6=i

〈φi|H − E|φj〉ψj(Rj). (5)

which couple together the unknown wave functions ψi(Ri). The matrix element 〈φi|H − E|φk〉
has two different forms, depending on whether we expand

H− E = Hi − Ei + Vi (the ‘post’ form)
= Hj − Ej + Vj (the ‘prior’ form).

Thus

〈φi|H − E|φj〉 = V post
ij + [Hi − Ei]Kij(post) (6)

or = V prior
ij +Kij [Hj − Ej ](prior)

where

V post
ij ≡ 〈φi|Vi|φj〉, V prior

ij ≡ 〈φi|Vj |φj〉, Kij ≡ 〈φi|φj〉. (7)

The overlap function Kij = 〈φi|φj〉 in equation (6) arises from the well-known non-orthogonality
between the basis states φi and φj if these are in different mass partitions. We will see below
that this term disappears in first-order DWBA, and can be made to disappear in second-order
DWBA, if the first and second steps use the prior and post interactions respectively.

2.2 N-step DWBA

If the coupling interactions Vi in equation (6) are weak, or if the back coupling effects of these
interactions are already included in the optical potentials of the prior channel, then it becomes
reasonable to use a distorted wave Born approximation (DWBA). This approximation always
feeds flux ‘forwards’ in the sequence 1 → 2 → · · · → N + 1 neglecting the back couplings. In
the elastic channel the wave function is governed by the optical potential defined there, and the
wave function in the i’th channel is governed by the equation

[Ei −Hi]ψi(Ri) =
j=i−1∑
j=1

〈φi|H − E|φj〉ψj(Rj) (8)

Initial channel:

[E1 −H1]ψ1(R1) = 0

Second channel:

[E2 −H2]ψ2(R2) = 〈φ2|H − E|φ1〉ψ1(R1) (9)
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If the prior interaction is used, the right hand side becomes

= 〈φ2|V1|φ1〉ψ1 + 〈φ2|φ1〉[H1 − E1]ψ1

= 〈φ2|V1|φ1〉ψ1 as ψ1 is on-shell. (10)
= V prior

21 ψ1 (11)

Final channel: (c = N + 1)

[Ec −Hc]ψc(Rc) =
j=c−1∑
j=1

〈φc|H − E|φj〉ψj(Rj) (12)

If the post interaction had been used for all the couplings to this last channel, then

[Ec −Hc]ψc(Rc) =
j=c−1∑
j=1

〈φc|Vc|φj〉ψj + [Hc − Ec]
j=c−1∑
j=1

〈φc|φj〉ψj (13)

so

[Ec −Hc]χc(Rc) =
j=c−1∑
j=1

V post
cj ψj (14)

where

χc(Rc) = ψc +
j=c−1∑
j=1

〈φc|φj〉ψj

= 〈φc|Ψ〉

Note that, as all the φj are square-integrable and hence decay faster than r−1 at large radii,
the ψc and χc are the same asymptotically. They differ only by an ‘off-shell transformation’,
and hence yield the same (on-shell) scattering amplitudes. The equation for χc has no non-
orthogonality terms once the post interaction is used in the final channel: this is what is meant
by saying that the final channel is ‘effectively on-shell’.

These results imply that in N -step DWBA, some non-orthogonality terms can be made to
disappear if ‘prior’ interactions are used for the first step, and/or if ‘post’ interactions are used
for the final step. This means that the non-orthogonality term never appears in the first-order
DWBA, irrespective of the choice of prior or post forms. In second-order DWBA, the prior-post
combination must be chosen [7] to avoid the non-orthogonality terms. It should be also clear
that non-orthogonality terms will have to be evaluated if the DWBA is continued beyond second
order.

2.3 Full CRC solution by iteration

There are a number of different ways of solving the CRC equations with the non-orthogonality
terms present: for discussions of different approaches see refs. [8], [41] and the survey of ref.[ch.
3][33].
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There are schemes available which can iterate all channels with an arbitrary choice of post or
prior interactions for all the couplings. Define

θij = 0 or 1 : presence of post on the j → i coupling, (15)
so 1− θij = 1 or 0 : presence of prior. (16)

The following iterative scheme [42] (n=1,2,..) on convergence then solves the CRC equations (5):

For n =0, start with

ψ
(0)
i = δ(i, i0)ψelastic (17)

δS
(0)
i = δψ

(0)
i = 0 (18)

For n = 1→ N + 1 (for N -step DWBA) solve

[Hi − Ei]χ
(n)
i + S

(n−1)
i = 0 (19)

with

S
(n−1)
i =

∑
j

[θijV
post
ij + (1− θij)V

prior
ij ] ψ(n−1)

j − δS(n−1)
i (20)

then calculate for subsequent iterations

δψ
(n)
i =

∑
j

θij〈φi|φj〉ψ(n−1)
j (21)

δS
(n)
i =

∑
j

(1− θij)〈φi|φj〉[S(n−1)
j + [Hj − Ej ]δψ

(n)
j ] (22)

ψ
(n)
i = χ

(n)
i − δψ(n)

i (23)

This scheme avoids numerical differentations except in an higher-order correction to δSi that
arises in some circumstances.

When the non-orthogonality terms are included properly, it becomes merely a matter of conve-
nience whether post or prior couplings are used, for one, two, and multistep calculations. The
equivalence of the two coupling forms can be confirmed in practice (see, for example, refs.[42],
and [9]), and used as one check on the accuracy of the numerical methods employed.

3 Wave Functions for Scattering and Bound States

In order to describe details of the nuclear transitions realistically, it is necessary to specify in
sufficient detail the initial and final states of the nuclei involved. To start with, the excitation
energies, spins and parities of all the states in each mass partition need to be specified, along
with the nuclear masses, charges and relative Q-values of the partitions. Each pair projectile
and target excited states is then a distinct channel with its own scattering wave function and
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boundary conditions. The initial projectile and target states will select one such channel as the
‘incoming channel’, with its boundary conditions specifying an incoming plane wave. All chan-
nels (including the incoming channel) will have outgoing spherical waves. Particular attention
must be given to the consistent placement of iL factors in these definitions.

The individual nuclear states are then specified in sufficient detail for the particular reaction
mechanisms involved. It is not necessary to specify the full quantum mechanical states of all
the nucleons in the nucleus, but rather, only the states of those changed in the reactions being
considered. In particular, one and two-nucleon wave functions will have to be described, if those
nucleons are to be transferred to other nuclei. If a nuclear state consists of a particle of spin s
bound outside a nucleus with possible core states φI , then the bound state radial wave functions
u`sjI(r) will have to be found by solving a coupled-channels set of equations for negative energy
eigen-solutions. If the particle is not bound, in the other hand, then its continuum range of
energies must be discretised into a finite collection of ‘bin’ states which can be scaled to unit
normalisation. If the nuclear state consists of two particles of intrinsic spins s1 and s2 outside
a core, then it is usually specified by a shell-model or by a Sturmian-basis calculation in terms
of the independent coordinates r1 and r2. To calculate transfer rates, however, the two-particle
wave functions need to be given in terms of the collective coordinates (usually r = 1

2(r1 + r2)
and ρ = r1 − r2). In order to use the states in a reaction calculation, therefore, equations are
given for the transformation from the independent coordinates.

When we have calculated the scattering wave functions, or at least their asymptotic parts in
terms of their S-matrix elements, we can find the cross sections for each outgoing pair of pro-
jectile and target states in each partition. Furthermore, if the initial projectile has non-zero
spin Jp, then the effect on these cross sections of polarisation of the projectile is specified by
the tensor analysing powers Tkq (for 1 ≤ k ≤ 2Jp and 0 ≤ q ≤ k). Integrated cross sections and
fusion polarisations can also be found using the S-matrix elements.

3.1 Total wave function

In each partition κ of the system into a projectile of mass Aκp and a target of mass Aκt, the
coupling order is

L + Jp = J; J + Jt = JT , (24)

which may be defined by writing

ΨMT
κJT

= | (L Jp)J, Jt;JT 〉 (25)

where Jp = projectile spin, Jt = target spin, L = orbital partial wave, and JT = total system
angular momentum.

The set {κpt, (L Jp)J, Jt;JT } will be abbreviated by the single variable α. Thus, in each
partition,

ΨMT
κJT

(Rκ, ξp, ξt) =
∑

LJpJJt

MµpMJµt

φJp(ξp) φJt(ξt) iLYM
L (R̂κ) 1

Rκ
f κJT

(LJp)J,Jt
(Rκ)

〈LMJpµp|JMJ〉 〈JMJJtµt|JTMT 〉 (26)
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here Rκ = radial coordinate from the target to the projectile in partition κ, ξp = internal
coordinates of projectile, ξt = internal coordinates of target, and

f κJT

(LJp)J,Jt
(R) ≡ fα(R) (27)

are the radial wave functions. The iL factors arise from the spherical Bessel expansion of the
incoming plane wave. Some formalisms include extra powers of i in the equation (26), in order
to make the coupling interactions Vα:α′ real. Inelastic coupling interactions can be made real (for
integer-valued spins, at least), by including a factor iJp+Jt in the definition of Ψ, and transfer
couplings can be made real by including a factor i` for orbital angular momentum ` of the bound
particle state in this partition. In a general purpose code [34], however, there may be clashes
between these different conventions. The ground state of 7Li, for example, would have a factor
of i3/2 on the rotational model convention, but a factor of i1 if the state were regarded as a ` = 1
bound state of a α core and a triton cluster. It seems simplest, therefore, to omit these addition
phase factors completely. The coupling interactions can very often be made real, nevertheless,
if the iL factors are included explicitly in the CRC equations, as in the next section.

The wave function Ψ could also have been defined using the ‘channel spin’ representation (as
in [43]) Ψ = |L, (JpJt)S;JT 〉, which is symmetric upon projectile → target interchange except
for a phase factor (−1)S−Jp−Jt . This would simplify the subsequent description of the coupling
elements in section 4, as the formulae for projectile mechanisms and target mechanisms would
differ only by this phase factor. However, the channel spin representation has the disadvantage
that the projectile spin-orbit force is not diagonal in this basis. This would not matter if
coupled-channels solutions were always sought, but one of the advantages of sometimes solving
the CRC equations iteratively is that the DWBA solutions of first and second order (etc.)
may be obtained. In order for the partially-iterated CRC solutions to reproduce the results of
DWBA codes, it is necessary to treat spin-orbit forces without approximation, and since spin-
orbit forces almost always are those of the projectile, the asymmetric representation of channel
(24) is advisable.

Identical Nuclei If one partition (κ say) is identical to another κ except that the projectile
and target nuclei are exchanged, then the total wave function should be formed from (1+πPκκ′)
times the above expression, where π = ±1 is the intrinsic parity of the two nuclei under exchange.
A simple method of dealing with this exchange is to first form the wave function of equation
(26), and then operate with (1 + πPκκ′) on both the wave functions and the S-matrix elements,
before cross sections are calculated. This is equivalent to the replacement

fα(R)← fα(R) + cα,α′fα′(R) (28)

where

cα,α′ = π(−1)LδL,L′(−1)JT +L−J−J ′
Ĵ Ĵ ′W (JpL

′JTJt;JJ ′) (29)

with α′ = |(L′Jt)J ′, Jp;JT 〉.
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3.2 Coupled equations

The CRC equations are in many cases of the form

[Eκpt − TκL(Rκ)− Uκ(Rκ)] fα(Rκ) =
∑

α′,Γ>0

iL
′−L V Γ

α:α′(Rκ′)fα′(Rκ′)

+
∑

α′,κ′ 6=κ

iL
′−L

∫ Rm

0
Vα:α′((Rκ), Rκ′)fα′(Rκ′)dRκ′ (30)

where the kinetic energy term is

TκL(R) = − h̄2

2µκ

(
d2

dR2
− L(L+ 1)

R2

)
, (31)

Uκ(Rκ) is the diagonal optical potential with nuclear and Coulomb components, and Rm is a
radius limit larger than the ranges of Uκ(Rκ) and of the coupling terms. The equations (30)
are in their most common form: they become more complicated when non-orthogonalities are
included by the method of section 2.3. The V Γ

α:α′(Rκ′) are the local coupling interactions of
multipolarity Γ, and the Vα:α′(Rκ, Rκ′) are the non-local couplings between mass partitions that
arise from particle transfers.

For incoming channel α0, the fα(Rκ) satisfy the boundary conditions

fα(Rκ′) =Rκ>Rm

i

2

[
δαα0H

(−)
Lηα

(Kα(Rκ))− Sα0αH
(+)
Lηα

(Kα(Rκ))
]

(32)

where H(−)
Lη and H

(+)
Lη are the Coulomb functions [44] with incoming and outgoing boundary

conditions respectively. The asymptotic kinetic energies are

Eκpt = E +Qκ − εp − εt (33)

for excited state energies εp, εt and Q-value Qκ in partition κ, and

Kα =

√√√√[ 2µκ

h̄2Eκpt

]
(34)

where µκ = AκpAκt/(Aκp +Aκt) is the reduced mass in the channel with partition κ, and

ηα =
2µκ

h̄2

ZκpZκte
2

2Kα
(35)

is the Sommerfeld parameter for the Coulomb wave functions.

3.3 Single-nucleon states

If φJM (ξ) is a core+particle bound state, then for coupling order |(`s)j, I; JM〉 , the wave
function is

φJM (ξc, r) =
∑
`jI

AjIJ
`sj [φI(ξc)ϕ`sj(r)]JM (36)

=
∑

`jI,mµmsm`

AjIJ
`sj 〈jmIµ|JM〉φIµ(ξc) 〈`m`sms|jm〉Y m`

` (r̂)φms
s

1
r
u`sjI(r)
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where ξc = core internal coordinates, φImu(ξc) = core internal state, φms
s = particle internal

spin state, u`sjI(r) = particle core radial wave function, and AjIJ
`sj is the coefficient of fractional

parentage.

3.3.1 Bound States

If the single-particle is bound at negative energy E around the core, then its wave function may
be found as the eigen-solution of a given potential:

[T`(r) + V (r) + εI − E]u`sjI(r) +
∑

`′j′I′, Γ>0

V Γ
`sjI:`′sj′I′(r)u`′sj′I′(r) = 0 (37)

with boundary conditions u`sjI(0) = 0 and, as r ≥ Rm, of u`sjI(r) ∝ W`(kIr) where W`(ρ) is
the Whittaker function and k2

I = 2µ|E − εI |/h̄2 is the asymptotic wave number.

If the core cannot be excited, then these coupled equations reduce to one uncoupled equation, but
solving this equation can still be regarded as a special case of the coupled bound state problem.
Eigen-solutions can be found by solving either for the bound state energy E, or by varying the
depth of the binding potential. In general, however, we can choose to vary any multipole of any
part of the binding potentials (except the Coulomb component), so one method of solving the
full coupled bound-state problem will be outlined below.

To define the phase (±1) of the overall wave function, some convention has to be adopted.
One component (say that around a core I = 0 state) can be set to either positive towards the
origin (r → 0), or positive towards large distances (r → ∞). The former choice is made in the
FRESCO code, following the Mayer-Jensen phase convention, which is also used for harmonic
oscillator wave functions in many structure calculations.

3.3.2 Solution of the Coupled-Channels Eigenvalue Problem

When, for example, the problem is to find the bound state of a particle in a deformed potential,
then several channels with different angular momenta will be coupled together. There are various
techniques for calculating the wave functions of these bound states: for a review see ref. [10]. The
Sturmian expansion method [45] can be used, or the coupled equations can be solved iteratively.
The Sturmian method has the advantage that all solutions in the deformed potential are found,
where sometimes the iterative method has difficulty in converging to a particular solution if
there are other permitted solutions near in energy. The iterative method has the advantage
that the radial wave functions (once found) are subject only to the discretisation error for the
Schrödinger’s equation, and are not dependent on the (time-consuming) diagonalisation of large
matrices, often of the order of 100 or more. As they satisfy the correct boundary conditions
independently of the size of a basis-state set, the radial wave functions of the iterative method
therefore more accurately reflect the details of the coupling potentials and of the core excitation
energies. As nuclear reactions are often confined to the surface region, it is important to satisfy
the exterior boundary conditions as accurately as possible.

A method for solving the uncoupled eigenstate problem has to be included in a reaction code
in any case, and since it can be generalised as described in this section to solving the coupled
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problem, it seems a worthwhile facility to have available. Bound states from a previous Sturmian
solution can still be included as explicit linear combinations of the single particle (uncoupled)
basis states used in the Sturmian expansion.

The general problem of finding eigen-solutions of a set M coupled-channels equations can be
represented as the problem of finding λ such that the equations[

d2

dr2
− `i(`i + 1)

r2

]
ψi(r) +

M∑
j=1

[Uij(r) + λVij(r)]ψj(r) = 0 (38)

with boundary conditions

ψi(R) = aiW`iηi
(kiR) (39)

ψi(R+ δR) = aiW`iηi
(ki(R+ δR)) (40)

ψi(0) = 0 (41)

(with k2
i ≡ κ2

i +θλ and ηi ≡ nui/(2ki)) for given partial waves `i, fixed potentials Uij(r), variable
potentials Vij(r), matching radius R, and Coulomb proportionality constants νi. The energy
constants κ2

i are the asymptotic components of the diagonal Uii(r), and θ is the asymptotic
component of the diagonal Vii(r) (assumed all equal).

The solution begins by constructing the trial integration functions for a trial value of λ, on either
side of an intermediate matching point r = ρ:

f in
i;j(r) by integrating r from h to ρ,

starting with f in
i;j(h) = δi,j h

`i+1/(2`i + 1)!!, and

fout
i;j (r) by integrating r from R in to ρ,

starting with f in
i;j(R) = δi,j W`iηi

(ki(R+ δR)).

The intermediate point r = ρ should be chosen where the wave functions are oscillatory, to avoid
having to integrate outwards in the classically forbidden region.

The solution is therefore

ψi(r) =

{ ∑
j bjf

in
i;j(r) for r < ρ∑

j cjf
out
i;j (r) for r ≥ ρ, (42)

and the matching conditions are the equality of the two expressions and their derivatives at
r = ρ. The normalisation is still arbitrary, so we may fix c1 = 1. In general the equations (38)
have no solution as λ is not exactly an eigenvalue. The method therefore uses the discrepancy
in the matching conditions to estimate how λ should be changed to λ + δλ to reduce that
discrepancy, and iterates this process to reduce δλ.

Thus at each iteration we first solve as simultaneous equations the 2M -1 of the matching con-
ditions ∑

j

bjf
in
i;j(ρ) =

∑
j

cjf
out
i;j (ρ) for all i (43)

∑
j

bjf
in
i;j(ρ)

′ =
∑
j

cjf
out
i;j (ρ) for all i 6= 1 (44)
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along with c1 = 1 for the 2M unknowns bi, ci. If the function ψi(r) is then constructed using
equation (42), there will be a discrepancy as

ψ′in ≡ ψ1(r)|r<ρ 6= ψ′out ≡ ψ1(r)|r>ρ, (45)

and this difference will generate δλ via

δλ
M∑
ij

∫ R

0
ψi(r)Vij(r)ψj(r)dr = ψ1(ρ)[ψ′out − ψ′in]. (46)

It is necessary while iterating in this manner to monitor the number of nodes in one or more
selected components of the wave function, as in general a given potential will have different
eigensolutions with different numbers of radial nodes. When the iterations have converged to
some accuracy criterion on the size of δλ, the set of wave functions can be normalised in the
usual manner:

M∑
i

∫ ∞

0
|ψi(r)|2dr = 1 (47)

and perhaps some of the components i omitted if their contribution to this norm is below some
preset threshold.

3.3.3 Continuum States

If the initial and/or final single-particle states of a transfer step are unbound E− ε > 0, the use
of single energy eigenstates φk(r) will result in calculations of the transfer form factors which will
not converge, as the continuum wave functions do not decay to zero as r → ∞ sufficiently fast
as to have square norms. One way [39], [40] of dealing with this divergence is to take continuum
states not at a single energy, but averaged over a range of energies. These ‘bin’ states that result
are square integrable, and if defined as

Φ(r) =
√

2
πN

∫ k2

k1

w(k)φk(r)dk (48)

with N =
∫ k2

k1

|w(k)|2dk (49)

for some weight function w(k), then they are normalised 〈Φ|Φ〉 = 1 provided a sufficiently
large maximum radius for r is taken, and that the φk are eigensolutions of a potential which is
energy-independent. They are orthogonal to any bound states, and are orthogonal to other bin
states if their energy ranges do not overlap. The construction can be easily generalised to give
coupled-channels bin wave functions.

The weight function w(k) is best chosen ([40] p. 148) to include some of the effects known to
be caused by the variation of φk(r) within the bin range k1 ≤ k ≤ k2. If w(k) = exp(−iδk),
where δk is the scattering phase shift for φk(r), then it includes the effects of the overall phase
variations of φk, at least in the DWBA limit. If, however, w(k) = exp(−iδk) sin δk ≡ T ∗k , where
Tk is the T -matrix element for φk(r), then it includes in addition a scale factor which is useful

12



Rm δE = 0.1 MeV δE = 0.5 MeV
(fm) e−iδk T ∗k e−iδk T ∗k
10 0.105 0.923 0.108 0.977
20 0.109 0.939 0.132 0.985
40 0.112 0.951 0.258 0.993
80 0.122 0.971 0.411 0.996
160 0.142 0.986 0.614 0.998

Figure 1: Normalisations of a continuum bin state. For this 3+ state in 6Li at 0.71 MeV, Saxon-
Woods potentials were used with V = 77.05 MeV, R = Rc = 1.2 * 41/3 fm., and a = 0.65
fm.

if the |Tk| varies significantly, as it does, for example, over resonances. Both choices result in a
real-valued wave function Φ(r) (for real potentials), which is computationally advantageous.

If the maximum radius (Rm say) is not sufficiently large, then the wave functions Φ will not
be normalised to unity by the factors given in equation (48). The rms radius of a bin wave
function increases as the bin width k2 − k1 decreases, approximately as 1/(k2 − k1). These bin
constructions can be used to describe the narrow resonant wave functions of say the 3+ state in
6Li, or the 7/2− state in 7Li, but these states will require a large limiting radius Rm unless the
w(k) = T ∗k weighting factor is used to emphasise the increase in the interior wave function over
the resonance. The 3+ state in 6Li at 0.71 MeV, for example, for which the resonance width is
approximately 40 keV, yields the normalisations shown in 3.3.3. It can be seen that without a
scale factor which emphasises the resonance peak, very large radii Rm will be needed to obtain
unit normalisation.

3.4 Two-particle bound states

3.4.1 Centre-of-mass coordinates

If φJT (ξc, r,ρ) is a two-particle bound state with total spin J and isospin T , then for coupling
order |{ L, (`, (s1s2)S)j}J12, I; J〉 we have

φJM =
∑
L`S
jJ12I

AJ12IJ
LjJ12

φIµI
(ξc).φσ1

s1
φσ2

s2
Y Λ

L (r̂) Y µ
` (ρ̂)

1
rρ
u12(r, ρ)

〈J12M12IµI |JM〉〈LΛjm12|J12M12〉〈`µSΣ|jm12〉〈s1σ1s2σ2|SΣ〉 (50)

where AJ12IJ
LjJ12

is the coefficients of fractional parentage, and φσ1
s1
φσ2

s2
are the intrinsic spins of the

two particles.

Note that two neutron transfer can be viewed as the transfer of a ‘structured particle’ (`, (s1s2)S)j,
and then becomes similar to single-particle transfers of above.

The radial wave function u12(r, ρ) can be given either as a cluster product of single-particle
wave functions u12(r, ρ) = ΦL(r)φ`(ρ), or input directly as a two-dimensional distribution e.g.
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from a Faddeev bound-sate calculation, or calculated from the correlated sum of products of
single-particle states, as in the next section.

3.4.2 Independent Coordinates

Two-particle states from shell-model calculations or from Sturmian-basis calculations [11], and
are then usually described by means of the |r1, r2〉 coordinates, and then transformed internally
into the centre-of-mass coordinates |r,ρ〉 of equation (50) using ri = xir + yiρ. For equal mass
particles, x1 = x2 = 1, and y1 = −y2 = 1

2 . The second description is as

ϕ12(r1, r2) =
∑

i

ci |(`1(i), s1)j1(i), (`2(i), s2)j2(i); J12T 〉 (51)

→
∑
u

ci
∑
L`Sj

|L, (`, (s1s2)S)j;J12T 〉φJ12T,i
L(`S)j(r, ρ) (52)

The transformation of the i’th component in the cluster basis is

φJ12T,i
L(`S)j(r, ρ) = 〈L, (`, (s1s2)S)j;J12T | (`1(i), s1)j1(i), (`2(i), s2)j2(i); J12T 〉 (53)

×〈[YL(r̂)Y`(ρ̂)]λ | [ϕ`1s1j1(r1)ϕ`2s2j2(r2)]J12T 〉 (54)

where (suppressing the i indices for clarity)

〈L, (`, (s1s2)S)j;J12T |(`1, s1)j1, (`2, s2)j2; J12T 〉 =

∑
λ

λ̂Ŝĵ1ĵ2

 `1 `2 λ
s1 s2 S
j1 j2 J12

 1 + (−1)`+S+T√
2(1 + δ`1,`2δj1,j2)

ĵλ̂W (L`J12S;λj)(−1)`+L−λ. (55)

The radial overlap integral can be derived by means of harmonic-oscillator expansions [12], with
the Bayman-Kallio expansion [13] or using the Moshinsky solid-harmonic expansion[71]. This
last method gives

Kλ
`L:`1`2(r, ρ) = 〈[YL(r̂)Y`(ρ̂)]λ | [ϕ`1(r1)ϕ`2(r2)]

λ〉

=
∑
n1n2

(
2`1 + 1

2n1

) 1
2
(

2`w + 1
2n2

) 1
2

(x1r)`1−n1(y1ρ)n1(x2r)n2(y2ρ)`2−n2

×
∑
Q

qQ
`1`2

(r, ρ) (2Q+ 1) ˆ̀
1
ˆ̀
2

ˆ`1 − n1
ˆ`2 − n2 L̂ˆ̀

×
∑

Λ1Λ2

(
`1 − n1 n2 Λ1

0 0 0

)(
`w − n2 n1 Λ2

0 0 0

)(
Λ1 L Q
0 0 0

)(
Λ2 ` Q
0 0 0

)

×(−1)`1+`2+L+Λ2(2Λ1 + 1)(2Λ2 + 1)W (Λ1LΛ2`;Qλ)

 `1 − n1 n2 Λ1

n1 `2 − n2 Λ2

`1 `2 λ

 .(56)

where

(
a
b

)
is the binomial coefficient (see Appendix A).
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The kernel function q`1`2Q(r, ρ) which appears in this expression is the Legendre expansion of
the product of the two radial wavefunctions in terms of u, the cosine of the angle between r and
ρ:

qQ
`1,`2

(r, ρ) =
1
2

∫ +1

−1

u`1(r1)
r1

`1+1u`2(r2)
r2

`2+1

PQ(u)du (57)

3.5 Scattering Amplitudes

The Rutherford amplitude for pure Coulomb scattering (with no e2iσ0 factor) is

Fc(θ) = − η

2k
exp(−2iη ln(sin θ/2))

sin2 θ/2
(58)

The Legendre coefficients for the scattering to the projectile state J ′p and target state J ′t from
initial projectile state Jp and target state Jt are given by

AL′
m′M ′;mM =

∑
L,J,J ′,JT

〈L0Jpm|Jm〉〈JmJtM |JTMT 〉

〈L′ML′J ′pm
′|J ′ML′ +m′〉〈J ′ML′ +m′J ′tM

′|JTMT 〉

4π
k

√
k′

µ′
µ

k
ei(σL−σ0)ei(σ

′
L′−σ′

0)

(
i

2

) [
δα,α′ − SJT

α,α′

]√2L+ 1
4π

Yc(L′,ML′) (59)

where Yc(L,M) is the coefficient of P |M |
L (cos θ)eiMφ in YM

L (θ, φ), σL = arg Γ(1 + L+ iη) is the
Coulomb phase shift, α′ refers to the primed values L′J ′pJ

′
tk
′µ′ etc., and α refers to the unprimed

values LJpJtkµ.

For each outgoing channel J ′p, J
′
t, we may then calculate the angular-dependent scattering am-

plitudes

fm′M ′:mM (θ) = δJp,J ′
p
δJt,J ′

t
Fc(θ) +

∑
L′

AL′
m′M ′:mMP

m′+M ′−m−M
L′ (cos θ) (60)

in terms of which the differential cross section is

dσ(θ)
dΩ

=
1

(2Jp + 1)(2Jt + 1)

∑
m′M ′mM

|fm′M ′:mM (θ)|2 . (61)

The near-side and far-side decompositions [14] of this cross section are defined by the same
process, with PM

L (u) replaced by 1
2 [PM

L (u)± 2i/πQM
L (u)] respectively. The Coulomb scattering

of equation (58) is included in the near-side component [15].

The spherical tensor analysing powers Tkq describe how the outgoing cross section depends on
the incoming polarisation state of the projectile. If the spherical tensor τkq is an operator with
matrix elements

(τkq)mm′′ =
√

2k + 1〈Jpmkq|Jpm
′′〉,
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we have

Tkq(θ) =
Tr(fτkqf+)
Tr(ff+)

(62)

= k̂

∑
m′M ′mM fm′M ′:mM (θ)∗〈Jpmkq|Jpm

′′〉fm′M ′:m′′M (θ)∑
m′M ′mM |fm′M ′:mM (θ)|2

(63)

The polarisations in the ‘transversity frame’ [16] are then

TT10 =
√

2iT11 (64)
TT20 = −1

2
(T20 +

√
6T22) (65)

TT30 = −1
2
(
√

3iT31 +
√

5iT33). (66)

The S-matrix elements can also be used to directly calculate the integrated cross sections

σ =
∫
4π

dσ(θ)
dΩ

dΩ (67)

to give

σ =
1
k2

k′

µ′
µ

k

4π
(2Jp + 1)(2Jt + 1)

∑
JT α α′

(2JT + 1)
∣∣∣SJT

α,α′

∣∣∣2 . (68)

The fusion cross section is defined as that amount of flux which leaves the coupled-channels
set because of the imaginary parts of the optical potentials. If the incoming projectile is not
spherical, then the fusion rate will depend on its orientation, and hence on the magnetic substate
quantum number m. One can therefore define the fusion polarisation as the distribution σfus

m ,
which can be calculated from the S-matrix elements as

σfus
m =

π

k2

∑
JT≥m

(2JT + 1)

×

1− 1
2Jt + 1

∑
J ′

pL′Mω

∣∣∣∣∣∑
LJ

〈JpmJ −m|L0〉〈JmJtM |JTM +m〉eiσLSJT ω
α,α′

∣∣∣∣∣
2
 (69)

where ω is the parity (±1) of the coupled-channels set for each total angular momentum JT

Partial Wave Interpolation: Heavy ion reactions typically involve a range of partial waves L up
to several hundred or more, especially when Coulomb excitations dominate the highest partial
waves. In such cases it is often advantageous to solve the coupled channels sets (30) for, say,
every n’th value of JT , and interpolate the intermediate values. Different values of n can be
used in different reaction regions: n can be small (1 or 2) for the grazing partial waves, and up
to 5 or 10 for the Coulomb-dominated peripheral processes, and can be adjusted for the required
balance between speed and accuracy.

This interpolation may be performed on the S-matrix elements themselves, or on the Legendre
amplitudes of equation (59) In this second method (that used in ref. [34]), cubic spline interpo-
lations are used. The main factor limiting the accuracy of this process is that the rate of change
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with JT of the Coulomb phase shifts exp i(σL +σ′L′) does not diminish as JT increases. For that
reason, it is advisable to interpolate not on the AL′

of equation (59), but on a ÃL′
defined with

a revised phase shift factor exp i(σL − σ′L′). Since L and L′ both tend to be near JT , it is only
the difference the phase shifts which limits the accuracy of the interpolation. It will therefore
be more accurate for smaller projectile and target spins, and incoming and outgoing channels
with similar Sommerfeld parameter η (equation 35).

4 Coupling Interactions

When two nuclei interact, a variety of kinds of elastic and inelastic potentials may be needed to
describe their interaction. As well as the scalar nuclear attractions and scalar Coulomb repul-
sions, if either of the nuclei has spin J 6= 0, then there can be higher-order tensor interactions
which couple together the spin and the orbital motion. If a nucleus has spin J ≥ 1

2 , then there
can be a spin-orbit component Vls(R)2l ·J in the Hamiltonian H. and if its spin is one or greater
(J ≥ 1), there can be tensor forces of various kinds. The most commonly used tensor force is
a Tr potential of the form VTr(R)R2(R,R).S2(J, J). Similar tensor forces are also generated if
the projectile and target spins coupled together can reach Jp + Jt ≥ 1: such is the case with the
tensor force between the proton and the neutron within the deuteron.

Inelastic potentials (4.2) arise when one or both of the nuclei have permanent deformations (as
seen in their intrinsic frame), or are vibrationally deformable. The inelastic potentials which
come from rotating a permanently deformed nucleus are described in the Hamiltonian by terms
of the form

Vλ =
∑
µ

Vλ(R)Dλ
µ0Y

µ
λ (R̂) (70)

where the form factors Vλ(R) have both nuclear and Coulomb components for angular momen-
tum transfers λ. Their nuclear component is approximately proportional to the derivative of
the scalar potential between the two reaction partners. Simultaneous excitations of both nuclei
are also possible (see e.g. [17]), but have not been included in the present code. Vibrational
excitations of a nucleus have more complicated form factors in general [1], but can still be ex-
panded in the form of equation (70). For the more intricate level schemes of strongly-deformed
nuclei, it will in general be necessary for each allowed transition to have its own transition rate
specified independently of a particular rotational or vibrational model.

Inelastic potentials also arise when one of the nuclei can be decomposed into a ‘core’ + ‘valence
particle’ structure 4.3), such that the opposing nucleus interacts with the two components with
distinct potentials acting on distinct centres-of-mass. The valence particle can be a single nu-
cleon, as in the case of 17O = 16O + n, or it can be a cluster of nucleons, as in 6Li =α + 2H, or
7Li =α + 3H. In all these cases, there arise inelastic potentials which can re-orient the ground
state of the composite nucleus, or can excite the valence particle into higher-energy eigenstates.

Finally, transfer interactions (4.4) arise when the reaction brings about the transfer of a valence
particle from one nucleus into a bound state around the other. As the incoming and outgoing
projectiles have different centres-of-mass, with the targets likewise, the correct treatment of
transfer interactions requires taking into account the effects of recoil and of the finite ranges of
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the binding potentials. These result in the coupling form factors becoming non-local, so that
they must be specified by the two-dimensional kernel functions Vα:α′(Rκ, Rκ′) in equation (30).
They also require that the coupled equations be solved by iteration, as will be discussed in
section 5. If the effects of recoil are neglected, the ‘no-recoil’ (NR) approximation is obtained,
but in general[72] this is inaccurate in ways which are difficult to predict. For that reason the
NR approximation is not included in the present code. For many light-ion reactions, however,
another ‘zero-range’ approximation is available, and this does remove many of the finite-range
requirements. Alternatively, a first-order correction for the finite-range effects may be estimated,
to give the ‘local energy approximation’. These two special cases are discussed at the end of the
section.

4.1 Matrix Elements of Tensor Forces

This section presents the matrix elements for spin-orbit forces and a variety of tensor interactions.
The radial form factors VQ(R) which multiply these matrix elements are not specified, since these
are usually determined by a fitting procedure in an optical-model search code, and a wide variety
of parameterised forms have been used.

We shall use the |(LJp)J1, Jt;JT 〉 representation for the order of coupling the spins, as in equation
(24).

4.1.1 Spin-orbit Interactions

For the projectile spin-orbit force L · Jp〈
(LJp)J1, Jt;JT |L · Jp|(L′Jp)J ′1, Jt;JT

〉
= δLL′δJ1J ′

1

1
2
[J1(J1 + 1)− L(L+ 1)− Jp(Jp + 1)] (71)

This convention amounts to a 2l · s spin-orbit force, rather than one based on l · σ. These are
the same for nucleons and spin 1

2 nuclei, but it means, for example, that the spin-orbit strengths
for deuterons and 7Li will have to be decreased as they have s = 1 and 3/2 respectively.

For the target spin-orbit interaction L · Jt, we first transform

|(LJp)J1, Jt;JT 〉 = (−1)J1−L−Jp |(JpL)J1, Jt;JT 〉
= (−1)J1−L−Jp

∑
J2

|Jp, (LJt)J2;JT 〉Ĵ1Ĵ2W (JpLJTJt;J1J2) (72)

so 〈
(LJp)J1, Jt;JT |L · Jt|(L′Jp)J ′1, Jt;JT

〉
= (−1)J1−J ′

1+L′−LĴ1Ĵ
′
1

∑
J2

(2J2 + 1)W (JpLJTJt;J1J2)W (JpLJTJt;J ′1J2)

δLL′
1
2
[J2(J2 + 1)− L(L+ 1)− Jt(Jt + 1)]
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4.1.2 Second-rank Tensor Forces

We use the notations of ref. [18]:

〈S‖S2‖S〉 =
1√
6

3K2 − S(S + 1)
〈SK20|SK〉

for any |K| ≤ S, (73)

and

〈L′‖R2‖L〉 =
√

2
3
L̂

L̂′
〈L 0 2 0 |L′ 0 〉 (74)

for the reduced matrix elements of the second-rank spin and radial tensors respectively. With
the projectile Tr tensor force R2 · S2(JpJp), the coupling interactions are〈

(LJp)J1, Jt;JT |R2 · S2(JpJp)|(L′Jp)J ′1, Jt;JT

〉
= δJ1J ′

1
L̂Ĵp(−1)J1−L−JpW (LL′JpJp; 2J1)〈L‖R2‖L′〉〈Jp‖S2‖Jp〉 (75)

For the target Tr tensor force R2 · S2(JtJt) the coupling interactions are〈
(LJp)J1, Jt;JT |R2 · S2(JtJt)|(L′Jp)J ′1, Jt;JT

〉
= (−1)J1−J ′

1+L′−L
∑
J2

Ĵ1Ĵ
′
1(2J2 + 1)W (JpLJTJt;J1J2)W (JpL

′JTJt;J ′1J2)

×L̂Ĵt(−1)J2−L−JtW (LL′JtJt; 2J2)〈L‖R2‖L′〉〈Jt‖S2‖Jt〉 (76)

For the combined target-projectile Tr tensor force R2 · S2(JpJt) the coupling interactions are〈
(LJp)J1, Jt;JT |R2 · S2(JpJt)|(L′Jp)J ′1, Jt;JT

〉
=

∑
SS′

Ĵ1Ĵ
′
1ŜŜ

′W (LJpJTJt;J1S)W (L′JpJTJt;J ′1S
′)

×L̂Ŝ (−1)JT−L−S′
W (LL′SS′; 2JT )〈L‖R2‖L′〉〈(JpJt)S‖S2‖(JpJt)S′〉 (77)

where the second-rank reduced matrix element is

〈(JpJt)S‖S2‖(JpJt)S′〉 = Ŝ′2̂ĴpĴt

 S Jp Jt

S′ Jp Jt

2 1 1

 √
Jp(Jp + 1)

√
Jt(Jt + 1)
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4.2 Inelastic Excitations

4.2.1 Nuclear Rotational Model

Consider a deformed nucleus with deformation lengths δλ. The effect of these deformations
can be expressed as a change in the radius at which we evaluate the optical potentials, the
change depending on the relative orientations of the radius vector to the intrinsic orientation of
the nucleus. Deformation lengths are used to specify the these changes, rather than fractional
deformations βλ, to remove a dependence on the ‘average potential radius’ RU . This is desirable
because often the real and imaginary parts of the potential have different radii, and it is not
clear which is to be used. It also removes a dependence on exactly how the ‘average radius’ of
a potential is to be defined.

When U(R) is the potential shape to be deformed, the coupling interaction is

V(ξ,R) = U(R− δ(R̂, ξ)) (78)

where the ‘shift function’ has the multipole expansion

δ(R̂′) =
∑
λ6=0

δλY
0
λ (R̂′) (79)

(R̂′ is the vector R̂ in the body-centred frame of coordinates defined by ξ). Transforming to
the space-fixed frame of reference, and projecting onto the spherical harmonics, the multipole
expansion becomes

V(ξ,R) =
∑

λµ Vλ(R)Dλ
µ0Y

µ
λ (R̂) (80)

where Vλ(R) = 1
2

∫+1
−1 U( r(R, cos θ) )Y µ

λ (θ, 0) d(cos θ) (81)

and r(R, u) = R−
√

2λ+1
4π Pλ(u)δλ + ε (82)

with ε =
∑

λ δλ
2/(4πRU ) (83)

The correction ε is designed ([45]) to ensure that the volume integral of the monopole potential
V0(R) is the same as that of U(R), and is correct to second order in the {δλ}}.

When the {δλ}} are small, the above multipole functions are simply the first derivatives of the
U(R) function:

Vλ(R) = − δλ√
4π

dU(R)
dR

, (84)

with the same shape for all multipoles λ > 0.

4.2.2 Coulomb Deformations

The deformations of the Coulomb potential can also be defined by the δλ, but unfortunately
an average potential radius is again introduced. The dependence on models for average radii
can be reduced by defining the Coulomb deformations in terms of a reduced matrix element
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such as that of Brink and Satchler [19], or that of Alder and Winther [20]. For the present
purposes we adopt that of Alder and Winther, as it is hermitian upon interchanging the forward
and reverse directions. We include, however, a simple phase factor to keep it real-valued. The
new deformation parameter is called M(Eλ) and has units of e.fmλ. In terms of the Alder and
Winther reduced matrix element it is

M(Eλ) = iI−I′+|I−I′| × 〈I ′‖Eλ‖I〉 (85)

and is directly related to the observable electro-magnetic transition rate without any model-
dependent parameters entering (except a sign):

M(Eλ) = ±
√

(2I + 1)B(Eλ, I → I ′). (86)

A model dependent radius parameter Rc only enters in the relation to the deformation lengths
of the rotational model:

M(Eλ, I → I ′) =
3ZδλRc

λ−1

4π
iI−I′+|I−I′| √2I + 1 〈IKλ0|I ′K〉 (87)

for transitions from a state of spin I to one of spin I ′ in a rotational band of projection K in a
nucleus of charge Z. Within K=0 bands, M(Eλ, 0 → I) = M(Eλ, I → 0) have the same sign
as δλ.

The only disadvantage of using reduced matrix elements as input parameters in this way is that
the transitions in a rotational band do not all have the same matrix elements M(Eλ, I → I ′),
even when the deformation length is constant.

The radial form factors for Coulomb inelastic processes may be simply derived from the multipole
expansion of |r− r′|−1, giving

Vc
λ(R) = M(Eλ)

√
4πe2

2λ+ 1

{
Rλ/Rc

2λ+1 (R ≤ Rc)
1/Rλ+1 (R > Rc)

(88)

remembering that a factor δλRc
λ−1 = βλRc

λ is already included in the matrix element of equa-
tion (87) which appears in this form factor. This form factor is to be multiplied by the angular
momentum coupling coefficients of the next section, and also by the charge of the opposing
nucleus.

4.2.3 Angular Momentum Coupling Coefficients

The basic rotational coupling coefficient, with Vλ given by equation (70), is

XJλ
LI:L′I′(R) = 〈LI;J |Vλ|L′I ′;J〉 (89)

The Coulomb form factors Vc
λ(R) have coupling coefficients

XJλ
LI:L′I′(R) = L̂L̂′(−1)J−I′−L+L′

W (LL′II ′;λJ)〈L0L′0|λ0〉 Vc
λ(R) (90)
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whereas the nuclear form factors Vλ(R) defined for a rotational band with projection K have
coupling coefficients

XJλ
LI:L′I′(R) = L̂L̂′(−1)J−I′−L+L′

W (LL′II ′;λJ)〈L0L′0|λ0〉 Vλ(R)
Î ′〈I ′Kλ0|IK〉. (91)

For projectile inelastic excitation, this coupling coefficient may be used directly as

〈(LJp)J, Jt;JT |Vλ|(L′J ′p)J ′, J ′t;JT 〉 = δJt,J ′
t
δJ,J ′ XJλ

LJp:L′J ′
p
(R) (92)

whereas for target excitations,

〈(LJp)J, Jt;JT |Vλ|(L′J ′p)J ′, J ′t;JT 〉 = δJp,J ′
p

(−1)J−J ′−L+L′
Ĵ Ĵ ′

×
∑
J2

(2J2 + 1)W (JpLJTJt;JJ2)W (JpL
′JTJ

′
t;J

′J2)XJ2λ
LJt:L′J ′

t
(R) (93)

4.3 Single Particle Excitations

When a nucleus consists of a single particle outside a core, the state of the particle can be
disturbed by the interaction with1 another nucleus, as the force of that nucleus can act differ-
entially on the particle and the core. If Vcc(Rc) and Vp(r′) are the interactions of the second
nucleus with the core and particle respectively, then the excitation coupling from state |(`′L′)λ〉
to state |(`L)Λ〉 is given by the single-folding expression

XΛ
`L:`′L′(R) = 〈(`L)Λ|Vcc(Rc) + Vp(r′)− Uopt(R)|(`′L′)Λ〉 (94)

where Uopt(R) is the optical potential already defined for these channels. This optical potential
is subtracted to avoid double counting of either the Coulomb or the nuclear potentials, rather
than disabling the potentials which have already been defined. This means that the ‘monopole’
potential V0(R, r) (to be constructed) will have no long-range Coulomb component, and will not
disturb the matching of the wave functions to the asymptotic Coulomb functions. It also means
that if a nuclear well has already been defined, the new monopole form factor will be simply the
difference between this well and that desired well calculated from the folding procedure.

If the potentials Vcc(Rc) and Uopt(R) contain only scalar components, then the R- and r-
dependent Legendre multipole potentials can be formed as

VK(R, r) =
1
2

∫ +1

−1

[
Vcc(Rc) + Vp(r′)− Uopt(R)

]
.PK(u)du (95)

where

K = the multipole moment,
u = r̂ · R̂ is the cosine of the angle between r and R,

r = aR + br is the particle-core vector,
and Rc = pR + qr is the core-nucleus vector.
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The coupling form factor between states u`′(r) and u`(r) is then

XΛ
`L:`′L′(R) =

1
2

∑
K

∫ Rm

0
u`(r)∗VK(R, r)u`′(r)dr(−1)Λ+K ˆ̀L̂ ˆ̀′L̂′

× (2K + 1)W (``′LL′;KΛ)

(
K ` `′

0 0 0

)(
K L L′

0 0 0

)
(96)

4.3.1 Projectile Single-Particle Mechanisms

If the projectile has the particle - core composition, then the coupling interaction is

V JT
α:α′(R) = 〈(LJp)J, Jt;JT |V|(L′J ′p)J, Jt;JT 〉 (97)

where the initial (primed) and final (unprimed) states are

φJ ′
p
(ξp, r) =

∑
`′sj′

A
j′IpJ ′

p

`′sj′ |(`′s)j′, Ip;J ′p〉 and φJp(ξp, r) =
∑
`sj

A
jIpJp

`sj |(`s)j, Ip;Jp〉, (98)

respectively, and Ip is the (fixed) spin of the core. Then

V JT
α:α′(R) =

∑
FΛIp
jj′``′

ĵĵ′(2F + 1)ĴpĴ ′p(2Λ + 1)W (`sJpIp; jF )W (`′sJ ′pIp; j
′F )

×Aj′IpJ ′
p

`′sj′ A
jIpJp

`sj W (L`JF ; ΛJp)W (L′`′JF ; ΛJ ′p)×XΛ
`L:`′L′(R) (99)

4.3.2 Target Single-Particle Mechanisms

If the target has the particle - core composition, then the coupling interaction is

V JT
α:α′(R) = 〈(LJp)J, J ′t;JT |V|(L′Jp)J, Jt;JT 〉 (100)

where the initial (primed) and final (unprimed) states are

φJ ′
t
(ξt, r) =

∑
`′sj′

A
j′ItJ ′

t
`′sj′ |(`′s)j′, It;J ′t〉 and φJt(ξt, r) =

∑
`sj

AjItJt

`sj |(`s)j, It;Jt〉, (101)

respectively, and It is the (fixed) spin of the core in the target. Then

V JT
α:α′(R) =

∑
Itjj′``′

A
j′ItJ ′

t
`′sj′ AjItJt

`sj

×
∑
Ja

(2Ja + 1)Ĵ ′tĴt W (JjJT It;JaJt) W (J ′j′JT It;JaJ
′
t)

×
∑
Λsa


L ` Λ
Jp s sa

J j Ja



L′ `′ Λ
Jp s sa

J ′ j′ Ja

XΛ
`L:`′L′(R) (102)
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4.4 Particle Transfers

4.4.1 Finite Range Transfers

To calculate the coupling term that arises when a particle is transferred, for example from a
target bound state to being bound in the projectile, we need to evaluate source terms of the
form

Sα(R) =
∫ ∞

0
〈(LJp)J, Jt;JT |V|(L′J ′p)J ′, J ′t;JT 〉 fJT

(L′J ′
p)J ′,J ′

t
(R′)dR′ (103)

where the initial (primed) state has a composite target with internal coordinates ξ′t ≡ {ξt, r′} :
φJ ′

t
(ξt, r′) = |(`′s)j′, Jt;J ′t〉 and the final (unprimed) state has a composite projectile with internal

coordinates ξp ≡ {ξp′ , r} : φJp(ξ′p, r) = |(`s)j, J ′p;Jp〉.

The V is the interaction potential, of which the prior form is

V = V`sj(r) + Ucc(Rc)− Uα′(R′) (104)

and the post form is

V = V`′sj′(r′) + Ucc(Rc)− Uα(R) (105)

where Vβ(r) is the potential which binds ϕβ(r), Uα(R) are the optical potentials, and Ucc(Rc)
is the ‘core-core’ potential, here between the p′ and the t nuclei. The Vβ will be real, but the
Uα and Ucc will typically have both real and imaginary components.

This source function Sα(R) evaluates a non-local integral operator, as it operates on the func-
tion fα′(R′) to produce a function of R. This section therefore derives the non-local kernel
Vα,α′(R,R′) so that the source term, which initially involves a five dimensional integral over r
and R̂, may be calculated by means of a one-dimensional integral over R′:

Sα(R) =
∫ Rm

0
Vα,α′(R,R′)fα′(R′)dR′. (106)

Note that when the initial and final single-particle states are real, then the kernel function is
symmetric

Vα,α′(R,R′) = Vα′,α(R′, R), (107)

whereas if the states are unbound and complex-valued, then the kernel function is hermitian
provided the interaction potential V is real. If the particle states and the interaction potential
are complex, then both the forward and reverse kernels must be each calculated independently.

When the potential V contains only scalar potentials, the kernel calculation can be reduced to
the problem of finding XΛ

`L:`′L′(R,R′) such that, given

〈(LJp)J, Jt;JT |V|(L′J ′p)J ′, J ′t;JT 〉 =
∑
ΛF

(−1)s+J ′
p−F Ĵ Ĵ ′t ĵF̂ ĴpΛ̂


L′ J ′p J ′

`′ s′ j′

Λ F J


×W (Jtj

′JTJ
′; J ′tJ)W (lsJpJ

′
p; jF )W (L`JF ; ΛJp)〈`L; Λ|V|`′L′; Λ〉, (108)
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the integral operator 〈`L; Λ|V|`′L′; Λ〉 has the kernel function XΛ
`L:`′L′(R,R′). Note that the F

summation may be performed in an inner loop that does not evaluate the kernel function.

Now the r and r′ are linear combinations of the channel vectors R and R′: r = aR+bR′ and r′ =
a′R + b′R′ where, when ϕ`(r) is the projectile bound state,

a = νtω, b = −ω, a′ = ω, b′ = −νpω, (109)

with νp ≡ Aκ′p/Aκp , νt ≡ Aκt/Aκ′t , and ω = (1 − νpνt)−1 . When ϕ`(r) is the target bound
state

a = −νpω, b = ω, a′ = −ω, b′ = νtω, (110)

with νp ≡ Aκp/Aκ′p , νt ≡ Aκ′t/Aκt , and ω = (1 − νpνt)−1 . The ‘core-core’ vector is always
Rc = r′ − r = (a′ − a)R + (b′ − b)R′.

Thus the spherical harmonics Y`(r̂) and Y`′(r̂′) can be given in terms of the spherical harmonics
Yn(R̂) and Yn′(R̂′) by means of the Moshinsky [71] solid-harmonic expansion (see also refs. [21]
and [46]

Y m
` (r̂) =

√
4π
∑
nλ

c(`, n)
(aR)`−n(bR′)n

r`
Y m−λ

`−n (R̂)Y λ
n (R̂′)〈`− nm− λnλ|`m〉 (111)

where

c(`, n) =

√√√√ 1
2n+ 1

(
2`+ 1

2n

)
,

with

(
x
y

)
the binomial coefficient (Appendix A).

We now perform the Legendre expansion

V
u`sj(r)
r`+1

u`′sj′(r′)
r′`

′+1
=
∑
T

(2T + 1)qT
`,`′(R,R′)PT (u) (112)

where the Legendre polynomials PT (u) are functions of u, the cosine of the angle between R and
R′, by using r = (a2R2 +b2R′2 +2abRR′u)1/2 (with r′ analogously) in the numerical quadrature
of the integral

qT
`,`′(R,R′) =

1
2

∫ +1

−1
V
u`sj(r)
r`+1

u`′sj′(r′)
r′`

′+1
PT (u)du (113)

The quadrature methods used here, and the accuracy attained, are discussed in section 5.3.

Using the Legendre expansion, the radial kernel function

XΛ
`L:`′L′(R,R′) =

|b|3

2

∑
nn′

c(`n)c(`′n′)RR′(aR)`−n(bR′)n(a′R)`′−n′
(b′R′)n′

×
∑
T

qT
`,`′(R,R′)(2T + 1)(−1)Λ+T+L+L′ ˆ̀̀̂ ′ ˆ(`− n) ˆ(`′ − n′)n̂n̂′L̂L̂′
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×
∑
KK′

(2K + 1)(2K ′ + 1)

(
`− n n′ K

0 0 0

)(
`′ − n′ n K ′

0 0 0

)(
K L T
0 0 0

)(
K ′ L′ T
0 0 0

)

×
∑
Q

(2Q+ 1)W (`L`′L′; ΛQ)W (KLK ′L′;TQ)

 `′ Q `
n′ K `− n

`′ − n′ K ′ n

 (114)

These formulae can also be used with V ≡ 1 to calculate the kernel functions KΛ
`L:`′L′(R,R′) for

the wave function overlap operator Kij ≡ 〈φi|φj〉 needed in evaluating the non-orthogonality
terms of section 2.3.

One disadvantage of this method of calculating the two-dimensional radial kernels XΛ
`L:`′L′(R,R′)

is that in the process of transforming the solid harmonics of r and r′ into those of R and R′, there
appears summations containing high powers of the coefficients a, b, a′ and b′ These products will
become larger than unity by several orders of magnitude, will the summed result is typically of
the order of unity. This means that the summations involve large cancellations, and as the degree
of cancellation gets worse for large ` and `′, the cancellation places a limit on the maximum
value `+ `′ of the transferred angular momentum.

One way of circumventing this loss of accuracy is that proposed by Tamura and Udagawa [47],
whereby solid harmonics are avoided in favour of a suitable choice of axes to render it practical
to calculate m-dependent form factors directly. If the z axis is not (as usual) parallel to the
incident momentum, but set parallel to R, and the x′ axis set in the plane determined by R and
R′, then the r and r′ vectors are also in this plane. The radial kernels may then be calculated
as a sum of m-dependent integrals over cos θ = R̂ · R̂′, as before the cosine of the angle between
R and R′. Although there are hence a larger number of radial integrals to be performed, there
are no large cancellations between the separate terms, and there is no limit on the size of the
transferred angular momentum.

A third method [22] of calculating the transfer form factors is that involving expanding the
initial and final channel wave functions in terms of spherical Bessel functions:

fα(R) =
N(L)∑
n=1

aα(Kn)R jL(KnR). (115)

Using then the Fourier transform of the bound state wave functions u`(r) and u`′(r′), a transfer
T-matrix element may be written as a sum of a set of one-dimensional integrals over a momentum
variable. Efficient codes [23] have been written for CCBA calculations of transfers induced by
light ions (up to masses ∼ 10 to 15 amu).

This plane-wave expansion method has however several disadvantages when it comes to solving
problems with coupled reaction channels. If transfers are to be calculated at each iteration of
the coupled equations, then the expansion (115) has to be recalculated at each step. Another
difficulty is that the method is not suited to heavy-ion induced transfers, as the large degree of
absorption inside the nuclei in these cases requires a large number of momentum basis states Kn

to be represented accurately. The plane-wave expansion becomes uneconomical, and sometimes
the determination of the aα(Kn) coefficients becomes numerically ill-conditioned

We will see in section 5.3.1, however, that if the cancellation which occurs in the first method
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is monitored, and steps taken to keep it to a minimum, a workable code [34] results which can
produce accurate results for L-transfers up to around 6.

4.4.2 Zero Range Transfers

When the projectile wave functions ϕ`(r) are all s-states (` = 0 and the interaction potential is
of zero-range (Vϕ(r) ∼ D0δ(r) ), then the form factor XΛ

`L:`′L′(R,R′) of equation (114) can be
simplified to

XL
0L:`′L′(R,R′) = D0

(−1)L′−`′

L̂

ˆ̀′L̂L̂′√
4π

(
`′ L L′

0 0 0

)
1
R
u`′sj′(R)

b2

a
δ(aR+ bR′). (116)

This can be made local by defining a new step size h′ = −ah/b ≡ νth in the stripping channel
α′.

4.4.3 Local Energy Approximation

If the interaction potential is of small range, though not zero, and the projectile still contains
only s-states, then a first-order correction may be made to the above form factor. This correction
will depend on the rate of oscillation of the source wave function fJT

(L′J ′
p),J ′,J ′

t
(R′) within a ‘finite-

range effective radius’ ρ. The rate of oscillation is estimated from the local energy in the entrance
and exit channels, and the result [24] is to replace u`′sj′(R) in the previous section by

u`′sj′(R)→ u`′sj′(R)

[
1 + ρ2 2µ(p)

α

h̄2

(
Uα′(R) + V`′sj′(R)− Uα(R) + εα

)]
(117)

where the U(R) are the optical potentials, with V`′sj′(r) the single-particle binding potential in
the target. The µ(p)

α is the reduced mass of the particle in the projectile, and εα its binding
energy.

At sub-Coulomb incident energies [25], the details of the nuclear potentials in equation (117)
become invisible, and as the longer-ranged Coulomb potentials cancel by charge conservation,
the form factor can be simplified to

D0u`′sj′(R)→ u`′sj′(R)D0

[
1 + ρ2 2µ(p)

α

h̄2 εα

]
= u`′sj′(R)D (118)

where

D = D0

[
1 +

(
ρk(p)

α

)2
]

(119)

is the effective zero-range coupling constant for sub-Coulomb transfers.

The parameters D0 and D can be derived from the details of the projectile bound state ϕ0ss(r).
The zero-range constant D0 may be defined as

D0 =
√

4π
∫ ∞

0
rV (r)u0ss(r)dr. (120)
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The parameter D, on the other hand, reflects the asymptotic strength of the wave function
u0ss(r) as r →∞, as it is the magnitude of this tail which is important in sub-Coulomb reactions:

u0ss(r) =r→∞
2µ(p)

α

h̄2

1√
4π

De−k
(p)
α r. (121)

It may be also found, using Schrödinger’s equation, from the integral

D =
√

4π
∫ ∞

0

sinh(k(p)
α r)

k
(p)
α

V (r)u0ss(r)dr. (122)

From this equation we can see that as the range of the potential becomes smaller, D approaches
D0. The ‘finite-range effective radius’ ρ of equation (119) is thus some measure of the mean
radius of the potential V (r).

5 Numerical Solutions

This section discusses the methods used to solve the coupled reaction channels equations (30),
when in general there are both local couplings V Γ

α:α′(Rκ) and non-local kernels Vα:α′(Rκ, Rκ′).
Now a group of m equations can be solved ‘exactly’ (subject only to radial discretisation errors)
by finding [53] a set of m linearly independent groups of solutions gi,k(R), and taking a linear
combination of these which satisfies the required boundary conditions. This method is only
practicable, however, if there are not too many equations (the numerical effort can rise as m3),
and if there are only local couplings. For in that case the independent solutions can be found in
a single outward ‘sweep’ of m2 radial functions. Non-local couplings mean, unfortunately, that
the source terms at a given radius depend on the wave functions at other radii both larger and
smaller, so that this ‘exact’ method becomes impractical.

In many cases of interest in nuclear physics, however, the non-local couplings are not too strong,
and can be treated as successive perturbations. They can then be applied iteratively until
further applications have progressively smaller efffects, and the solutions have converged (to
some preset criterion of accuracy). Some failures of convergence can remedied by the use of
Padé approximants.

When both local and non-local couplings are present, and the local couplings are too strong
to allow an iterative scheme to converge, a combination of the exact and iterative schemes is
possible. In this approach, several channels can be ‘blocked’ together, and treated as one unit
during the iterations, while solving the couplings within the block by the exact method.

There are several other features of typical nuclear reaction calculations which simplify the nu-
merical methods:

1. If the sum of the incoming projectile and target spins is greater than one, then solutions
will often be required for the same set of CRC equations, only with different boundary
conditions.
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2. The diagonal potentials Uκ(Rκ) usually have a significant imaginary component for small
Rκ, and hence damp the solutions fα(Rκ) in this region. This enables lower radial cutoffs
to be used for Rκ near zero, with little loss of accuracy.

3. The bound states u`sjI(r) used in transfer reactions decay exponentially outside the surface
region of the nuclei. This means that the integrand in equation (113) for the transfer
kernels will often decay exponentially both as |R−R′| increases, and as u ≡ cosθ ≡ R̂ · R̂′

decreases from unity.

5.1 Integration of the Radial Equations

If the non-local interactions Vα,α′(R,R′) in the CRC equations (30) are present, then it will
always be necessary to solve the coupled channels by iteration. With the local couplings V Γ

α,α′(R),
however, we have a choice whether to iterate, or to include them in the exact solutions of the
close-coupling method. A simple option is to allow a specifiable number b of channels to be
coupled exactly, with the remainder only being fed after one or more iterations. This would
be useful, for example, if the channels for the low-lying states of a highly-deformed target were
included in this block of b channels, and if the remaining channels (e.g. for transfers) were not
fed by more than 2 or 3 steps beyond this initial block. Restricting these iterations to one is
equivalent to solving a CCBA model.

Whether the coupled equations are of the simpler form of equation (30), or of the more complex
form of section 2.3, a particular n’th iteration will require solving set of m equations of the form

d2

dR2
fi(R) =

b∑
j=1

Cij(R)fj(R) + Si(R) for i = 1 · · · b, (123)

and
d2

dR2
fi(R) = Cii(R)fi(R) + Si(R) for i = b+ 1 · · ·m, (124)

where Si(R) is the source term constructed by means of the wave functions f (n−1)
i (R) of previous

iterations :

Si(R) =
m∑

j=jmin

Cij(R)f (n−1)
j (R) (125)

where jmin = b+ 1 if i ≤ b and jmin = 1 if i > b.

These coupled differential equations can be solved, following the method of ref. [53] by forming
the linearly independent solution sets gi,k(R), where the k’th solution consists of a set of all
channels (i = 1 · · ·m) which is made independent of the other sets by having a distinctive
starting value

gi,k(Rmin − h) = 0, gi,k(Rmin) =
1

(2Li + 1)!!
(KiRmin)Li+1δi,k (126)

for the initial conditions in the radial integration of equations (123). For this integration, the
code FRESCO uses the modified Numerov method, and other codes such as Tamura’s JUPITOR
[26] have used Euler’s method to start with near the origin (R=0), and then Störmer’s 6-point
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IT
1 g1,0 g2,0 .. gm,0 inhomogeneous solns.
2 (not used) gb+1,b+1 .. gm,m uncoupled regular solns.
3 g1,1 g2,1 ..
4 g1,2 g2,2 .. coupled regular solutions
↓ .. .. .. (equations 1→ b)

b+ 2 g1,b g2,b .. gb,b

Figure 2: Independent Solution Vectors: Layout of the independent radial wave functions for
solving a system of m equations, of which b are to coupled exactly. Each entry represents a
vector of n radial points, and the entries in bold are those with a non-zero initial values for their
outward radial integration.

method to continue. A general discussion of numerical integration schemes is given in Melkanoff
et al. [27], along with error analyses of the different methods.

The independent solutions gi,k(R) are required for m+1 values of k. The solution vectors for
k = 1 · · ·m are solved starting with equation (126) but with no source term in the equation (123):
these will contribute to the complementary solution of the homogeneous equation. We also need
a particular solution gi,0(R) of the inhomogeneous equation, solved with the source terms but
with no non-zero values in equation (126). These partial solutions may be conveniently laid out
as in figure 5.1. If, however, it is known that the wave functions of certain channels are not
required (if, for example, they are only fed in the last iteration), then it is not necessary to store
their components in the array, for their S-matrix elements can still be calculated.

The solutions fi(R) are the linear combination of the gi,k(R)

fi(R) =
m∑

k=0

akgi,k(R) (127)

satisfying the boundary conditions of equation (32) at R = Rm and say R = Rm − 5h. The
coefficient a0 is always unity, to match the source terms correctly. The S-matrix elements are a
by-product of the linear matching equations (32).

Note that the independent solutions gi,k(R) for k ≥ 1 need only be calculated the first time this
coupled channels set is used. If they are stored as in figure 5.1, subsequent iterations need only
recalculate the first row (IT=1) as the source terms vary. Furthermore, if there are multiple
incoming channels for fixed total spin JT and parity ω, then solutions after the first can also
use the gi,k(R) already stored. The first iteration for these subsequent incoming channels will in
fact not require any radial integrations whatsoever, merely finding a new set of {ak} from the
new matching conditions, and recalculating the sum (127) if the wave functions are required.

Tolsma and Veltkamp [54] point out one difficulty with this method, which is that if the couplings
Ci,j are strong for i 6= j, then the linear independence of the gi,j(R) will be reduced as R
increases through a classically forbidden region. This is because the components with negative
local kinetic energy will generally consist of an exponentially growing part and an exponentially
decreasing part. The former is responsible for the tendency to destroy the initially generated
linear independence of the solution vectors. The longer the integration continues through a
classically forbidden region, the stronger this tendency will be; for instance, it will occur in
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scattering problems of nuclear physics with energies near or below the Coulomb barrier. It
will also occur if inelastic form factors are used which are not approximately derivatives of the
diagonal potential, but which extend more than usual into the interior of the nucleus that is
classically forbidden because of the centrifugal potentials.

Tolsma et al. [54] propose a stabilization procedure to monitor and if necessary re-orthogonalise
the solution vectors. If this were not done, there would be large cancellations in the sum of
equation (127), resulting if severe in complete loss of accuracy of the S-matrix elements and the
solution wave functions.

A simpler approach is to increase the starting radius Rmin at which the radial integrations
begin. It is advisable in any case for reasons of stability at small radii to have a minimum radius
proportional to some angular momentum L typical of the coupled channels set:

Rmin ≥ cLh (128)

for some constant c in the region of 1 or 2, where h is the radial step size. This constant could
be increased to avoid the loss of independence in the present problem, but this is not always
satisfactory, as the absorptive effects of the optical potentials at intermediate radii might thereby
be lost. An alternative remedy (adopted in ref.[34]) is to have a specifiable radial cutoff R(c)min
for the off-diagonal coupling terms only. This allows the absorption in the diagonal potentials
to be effective at all radii outside Rmin of equation (128), but does not allow any strong coupling
terms to lead to loss of independence until some larger radius which can be adjusted to keep the
loss of accuracy to an acceptable level. It thus should be a regular policy in a computer code
to integrate the equations (123) to a precision of at least 12 to 16 significant figures, to monitor
the degree of cancellation in equation (127), and to notify the user should this approach within
2 or 3 powers of ten of the precision limit of the computer. Note that it is not necessary for the
coupling terms Cij(R) (etc) to be accurate to full machine precision, only that they should be
consistently precise when converted to that precision.

5.2 Convergence of the Iterative Method

The iterative method of solving the CRC equations (5, 30) will converge if the couplings are
sufficiently small. The procedure will however diverge if the the couplings are too large, or if the
system is too near a resonance. On divergence, the successive wave functions ψ(n)

i will become
larger and larger as n increases, and not converge to any fixed limit. Unitarity will of course be
violated as the S-matrix elements will become much larger than unity.

5.2.1 Improving the Convergence Rate

There are several ways of dealing with this problem:

1. Solving some of the local couplings exactly by the methods of section 5.1, and iterating
only on the non-local couplings and the remaining local couplings.

2. Solving all the channels simultaneously via a very lar ge system of linear equations, with
each radial point in each channel as a separate unknown [28].
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3. Find a separable expansion for the non-local kernels, so that they can be included exactly
in the coupled-channels solution [49].

4. Expand the wave functions with a range of basis states of Coulomb and (say) Gaussian [50]
or Airy [5] functions, and take the coefficients in this basis as the unknowns in a system
of linear equations.

5. Use Padé approximants to accelerate the convergence of the sequence S(n)
α of S-matrix

elements [51, 52].

6. Iterating the equations sequentially as in [51] and [52], rather than all equations as a block.

7. The inwards-outwards method of refs. [29], [30] and [37].

For the range of heavy and light-ion reactions that we are considering here, the methods (1) and
(5) above have been adopted.

The method (2) is not used because of the size of the matrix that results. Initially, the matrix
would be sparse, with selected elements away from the diagonal being non-zero because of
the coupling potentials. The kinetic energy operators occupy a band of width three along
the diagonal. Although a Gaussian elimination procedure would allow potentials of arbitrary
coupling strength to be included, it will fill in large regions of the matrix as the solution proceeds,
and this makes the storage requirements prohibitive.

The separable expansion method (3), while useful for light-ion reactions, is unsatisfactory for
heavy-ion transfers. This is because if the masses of the initial and final nuclei become large
relative to the mass of the transferred particle, the form factor for the transfers becomes more
nearly local. As we approach the no-recoil limit (which makes the form factors exactly local) a
separable expansion of a nearly-local kernel will require a large number of terms. In the limit
of a local form factor, the separable expansion will require the same number of terms as there
are radial points.

The method (4) of expanding the wave functions in Gaussians could have been used, provided
the characteristic widths in R-space of the basis states were chosen in accordance with the wave
numberKα in the relevant channel. This requirement is less severe with light-ion reactions, where
the wave numbers are typically ≤ 1 fm−1. For heavy-ion reactions, however, the oscillation rates
are much larger, and a more sensible method is to expand in terms of Airy functions that are
depend explicitly on the local wave number over some radial region.

It is very useful to be able to iterate the coupled equations in a conventional manner, as then
1, 2 and 3 step DWBA results (etc.) can be recovered by stopping the iterations short of full
convergence. This recovery of DWBA results is more difficult with sequential iteration (6), but
both that method and the method of (7) would be definitely advantageous when, say, exciting a
long rotational band by successive application of a quadrupole coupling. Using Padé acceleration
has the advantages that it need only be employed if ordinary iterations are seen to diverge, and
that it transforms the previously-divergent results with little new computational effort.
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5.2.2 Padé Approximants for Sequence Extrapolation

A given sequence S0, S1, · · · of S-matrix elements that result from iterating the CRC equations
can be regarded as the successive partial sums of the polynomial

f(λ) = S0 + (S1 − S0)λ+ (S2 − S1)λ2 + · · · (129)

evaluated at λ=1. This polynomial will clearly convergence for λ sufficiently small, but will
necessarily diverge if the analytic continuation of the f(λ) function has any pole or singularities
inside the circle |λ| > 1 in the complex λ-plane. The problem that Padé approximants solve is
that of finding a computable approximation to the analytic continuation of the f(λ) function.
This is accomplished by finding a rational approximation

P[n,m](λ) =
p0 + p1λ+ p2λ

2 + · · ·+ pnλ
n

1 + q1λ+ q2λ2 + · · ·+ qmλm
(130)

which agrees with the f(λ) function in the region where the latter does converge, as tested
by matching the coefficients in the polynomial expansion of P[n,m](λ) up to and including the
coefficient of λn+m.

There are many different ways [48] of evaluating the coefficients {pm, qn}, but for the present
problem we can use Wynn’s ε-algorithm [31], which is a method of evaluating the upper right
half of the Padé table at λ=1 directly in terms of the original sequence S0, S1, · · ·.

5.2.3 Wynn’s epsilon Algorithm

Initialising ε(j)0 = Sj and ε(j)−1 = 0, we form an array using the relation ε(j)k+1 = ε
(j+1)
k−1 +(ε(j+1)

k −
ε
(j)
k )−1. Thus we can construct the table given the second column from the initial sequence Sj .

The table then gives the transposed upper right half of the Padé table, including the diagonal:

ε
(j)
2k = P[k,k+j](1). (131)

Experience has shown that for typical sequences the most accurate Padé approximants are those
near the diagonal of the Padé table, and these are just the right-most ε(0)2k in the ε table.

When accelerating a vector S-matrix elements Sj , with a component for each coupled channel,
then it is important to accelerate the vector as a whole. Wynn [32] pointed out that this can be
done using the Samuelson inverse

x−1 = (x · x∗)−1x∗ (132)

where x∗ is the complex conjugate of x. Otherwise there will be problems when iterating (say) a
two-channel system with alternating backwards and forwards coupling, because of zero divisors
in the ε algorithm.
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5.3 Transfer Form Factors

5.3.1 The Cancellation Problem

As discussed in section 4.4.1, the summations over T in equation (114) involve large cancellations,
and as the degree of cancellation gets worse for large ` and `′, this places a limit on the maximum
value `+ `′ of the transferred angular momentum.

Typically, however, the transfer form factors are only needed to be accurate to around 0.1 to 1%,
so if computer arithmetic is used which is accurate to 14 or 16 decimal digits, then cancellations
up to 12 or 13 orders of magnitude should in principle not result in catastrophic errors in the
transfer rates. With careful programming, this accuracy can be achieved. What is necessary is
to be careful that all quantities in the equations (114, 113) above which depend on the Legendre
order T are calculated to the full computer precision. It is not necessary, for example, for the
channel wave functions fα(R), the bound state wave functions u`sjI(r) or the quadrature of
the integral (113) to be accurate to full precision (which in any case would be impossible). It
is only necessary that all these quantities have exactly the same computer precision when the
coefficients over T (the qT

`,`′(R,R′)) are evaluated, and when the sums over T (in equation 114)
are performed. This will require principally that the ‘radial framework’ that gives r and r′ in
terms of R and R′ be accurate to full machine precision, as also the Racah algebra coefficients in
equation (114). In fact, the channel wave functions fα(R) and the bound state wave functions
u`sjI(r) may be calculated with reduced precisions using shorter computer words and faster
arithmetic should these be available. It is also not necessary for the coefficients and sums over
T be consistent to full accuracy for different R and R′ values, as the large cancellations only
occur between different T values for each separate R and R′ combination.

Since the accuracy of the quadrature in the equation (113) is not critical to the overall accuracy
of the transfers, calculations may be speeded up if we economise on the range of the u variable
and on the number of intermediate steps required. Even in light ion reactions it is not necessary
to integrate u to −1 (θ to 180◦) as was done in the code LOLA [72] for example. An efficient
procedure to adopt is that used in the DWBA code DAISY[55], where, for each successive R
value, the code monitors the rate of decay of the integrand as θ increases. For a given accuracy
criterion, an estimate can then be made of an adequate upper limit for the θ integration at the
next R value. Typically, the upper limits of θ decrease monotonically as R increases from 0
to the upper limit Rm. Because the integrand is largest for θ=0, the accuracy of the angular
integration for small θ is improved by a change of variable from u to x as in ref.[55]:

θ =
1
4
(3x2 + 1)xθmax (133)

for 0 ≤ x ≤ 1. The quadrature over u of equation (113) then becomes

qT
`,`′(R,R′) =

1
2

∫ 1

0
V
u`sj(r)
r`+1

u`′sj′(r′)
r′`

′+1
PT (u) sin(θ)

dθ

dx
dx. (134)

The parameter θmax is adjusted for each successive value of R. according to the rate at which
the integrand is observed to decay as θ increases, as described earlier.
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5.3.2 Radial Grids

The methods used to calculate, store and use the non-local form factors quT
`,`′(R,R′) (equation

113) and Vα,α′(R,R′) (equation 108) have to be efficient in a wide variety of reactions, from
light-ion reactions such as 3He(3H,4He)2H or 16O(20Ne,24Mg)12C to heavy-ion reactions, such as
nickel on tin one-nucleon transfers. In the former cases, the radial form factors Vα,α′(R,R′) will
be non-zero over large regions of the R−R′ space, so (following ref [56]) interpolation procedures
should prove effective.

However, when small masses are transferred between two larger nuclei the form factor is nearly
local, and only large around R ∼ R′. If the whole (R,R′) array had to be calculated and stored
in these cases, modelling heavy-ion transfers would become inefficient, even with interpolation
methods. The form factor now varies rapidly as a function of δR ≡ R−R′ (especially for heavy
ion reactions, as the Jacobian b3 in equation (114) becomes large), and varies only slowly with
R (if δR is constant), as this variation follows the radial dependence of the bound state wave
functions. The best procedure is thus [56] to first change to the coordinate pair δR and R, and
then to use different interpolatory intervals hδ and hR in the two directions respectively. Then,
when nuclear masses become large compared with the mass of the transferred particle, hδ can
become smaller, perhaps even smaller than h, the basic radial step size.

The method adopted in FRESCO is to let the user specify hδ and hR as multiples or submultiples
of h. The value of hR is very often always 3 to 5 times larger than h, as this reflects the typical
rate at which bound state wave functions vary. If the bound state wave functions have many
internal nodes, then the interpolation interval hR cannot be so large (this is often the case with
α-particle bound states).

The hδ, on the other hand, will be larger than h for light-ion reactions (as described in [47]), but
will be comparable with or smaller than h for few-nucleon transfers between heavy ions. The
user also specifies the maximum and minimum values of the range of δR, which again will be
large ( ∼ nuclear radii) for light ions, and small ( ∼ 1 or 2 fm.) for heavy ion reactions. The
accuracy of these choices is checked retrospectively by collecting statistics on the distributions
of the functions qT

`,`′(R, δR), averaging over R. and all partial waves T , `, and `′.

When hδ or hR are multiples h, then (say) cubic splines in two dimensions can be used to expand
the form factors for the integrals of equation (106). If, however, hδ is a submultiple h, as is the
case in many heavy-ion reactions, then a more efficient procedure is possible.

Suppose, say, we wish to evaluate the numerical integral

I =
∑
j

V (xj)f(xj), (135)

where the f(xj) are the interpolated values of the function f(x) between its stored values fi at
x = (i− 1)h. Let the interpolation method be linear:

f(x) =
∑
m

am(x)fm (136)

for some x-dependent coefficients am(x) from (say) fitting cubic splines over some range (most
of the am will be zero except for m ∼ i± 2). Then I can be evaluated directly in terms of the
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fm :

I =
∑
j

V (xj)
∑
m

am(xj)fm (137)

=
∑
m

V mfm (138)

where

V m ≡
∑
j

V (xj)am(xj) (139)

is a new effective form factor This means that when hδ is a submultiple of h, we do not need to
store a form factor at intervals of hδ, only at intervals of h, if we use the ‘preemptive interpolation’
of equation (139). This has the further advantage that as the no-recoil limit is approached (as
the mass of the transferred particle becomes a smaller fraction of the interacting nuclei), then
the form factors qT

`,`′(R, δR) and V α,α′(R, δR) need fewer grid points in the δR direction. Less
arithmetic is needed to evaluate the source functions of equation (106), which change from

Sα(R) =
∫ δRmax

δRmin

V α,α′(R, δR) fα′(R− δR)d(δR). (140)

to

Sα(ihR) = h
∑
j

V α,α′(ihR, jh)fα′((inR − j)h) where nR ≡ hR/h (141)

even when the original kernel functions vary rapidly as δR changes in steps of h (with R con-
stant).

Simultaneous Two-Nucleon Transfers: A similar ‘preemptive’ summation is possible when calcu-
lating the form factors for the simultaneous transfer of two nucleons between states of the form of
equation (50) in the projectile and in the target. As mentioned in section 3.4, two-nucleon trans-
fer can be viewed as the transfer of a ‘structured particle’ with internal coordinates (`, (s1s2)S)j
and ρ, the distance between the two nucleons. A transfer is only possible if the initial and final
states have identical values for these ‘internal coordinates’. The angular momentum quantum
numbers can be matched exactly, but source terms can either be constructed for each ρ value
and summed in equation (106), or the separate ρ products can be summed as early as equation
(113). Because the separate ρ values are only used in a summation, it is most economical to use
Gaussian quadrature, as for a given accuracy this reduces by a half the number of ρi values at
which the wave functions of equation (50) need to be calculated and stored. If the ρi are chosen
to be the Gaussian quadrature points over some chosen range, and if wi are the corresponding
weights, the equation (113) becomes

qT
L,L′(R,R′) =

1
2

∫ +1

−1
r−L−1r′

−L′−1 [
∑

i

wiVu12(r, ρi) u′12(r
′, ρi)]PT (u)du. (142)

Equation (114) remains unchanged, and this means that two nucleon transfers can be calculated
efficiently with little more computational work than that required for single-particle transfers.
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[20] K. Alder and Å. Winther, Coulomb Excitation (Academic Press, New York, 1966) and

Electromagnetic Excitation (North Holland, Amsterdam, 1975).
[21] N. Austern, R.M. Drisko, E.C. Halbert and G.R. Satchler, Phys. Rev. 133 (1964) B3.
[22] D. Robson and R.D. Koshel, Phys. Rev. C6 (1972) 1125.
[23] P. Nagel and R.D. Koshel, Phys. Rev. C13 (1976) 907, Comput. Phys. Commun. 15 (1978)

193.

37



[24] P.J.A. Buttle and L.J.B. Goldfarb, Proc. Phys. Soc. (London) 83 (1964) 701; for a review
see G.R. Satchler, [33, §6.14.1].

[25] L.J.B. Goldfarb and E. Parry, Nucl. Phys. A116 (1968) 309.
[26] T. Tamura, Oak Ridge National Laboratory Report No. ORNL-4152 (1967).
[27] M.A. Melkanoff, T. Sawada and J. Raynal, Methods in Computational Physics, Vol. 6

(1966), Academic Press (New York).
[28] J. Bang, J.-J. Benayoun, C. Gignoux, and I.J. Thompson, Nucl. Phys. A405 (1983) 126.
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A Notation and Phase Conventions

Spherical Harmonics

The phase convention used here is

Y m
L (θ, φ) =

√
2L+ 1

4π
(L−m)!
(L+m)!

(−1)meimφPm
L (cos θ)

for m ≥ 0, and Y −m
L = (−1)mY m∗

L to give negative m values.

Angular Momentum Coupling Coefficients

The notation 〈`1m1`2m2|LM〉 has been used for the Clebsch-Gordon coupling coefficient for
coupling states `1m1 and `2m2 together to form LM. The(

a b c
α β γ

)
≡ (−1)a−b−γ

ĉ
〈aαbβ|c− γ〉

represents the Wigner 3-j symbol, and

x̂ ≡
√

2x+ 1.

The 9-j coupling coefficient is used in two forms related by
a b c
d e f
g h i

 ≡ ĉf̂ ĝĥ
 a b c
d e f
g h i

 .
The binomial coefficient is (

x
y

)
=

x!
y!(x− y)!

.
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B Coupled Channels Codes in Nuclear Physics

There is a natural progression of complexity in the codes being considered here:

1. One-step (DWBA) codes Inelastic excitations Zero-range transfers (ZR) No-recoil transfers
(NR)

2. Coupled channels (CC) codes with local form factors Inelastic excitations (CC) Zero-range
transfers (ZR-CC, sometimes included in CCBA) No-recoil transfers (NR-CC, sometimes
included in CCBA)

3. One-step (DWBA) codes for exact finite-range transfers (EFR-DWBA)

4. Coupled channels Born approximation (CCBA): a coupled set of channels followed by a
finite-range transfer (sometimes called EFR-CCBA).

5. Two-step DWBA Zero-range transfers (2-step ZR-DWBA) No-recoil transfers (2-step NR-
DWBA)

6. One-step DWBA codes for exact finite-range transfers (EFR-DWBA)

7. Two-step DWBA for exact finite-range transfers (2-step EFR-DWBA)

8. Coupled reaction channels (CRC), allowing finite-range transfers.

The following is a summary of the more widely known coupled channels codes (codes which can
only perform one-step DWBA calculations have been excluded).

1. Yoshida [57]: Inelastic CC with δ-function interactions
2. Buck, Stamp and Hodgson [53] and Satchler (see ref.[53]): Inelastic CC
3. Tamura [1]: General purpose inelastic CC
4. Stamp [58]: ZR-CC
5. Rawitscher [59]: ZR-CC using iterated Green functions
6. Tamura and Low [56] and [47]: Saturn-Mars - NR-DWBA and EFR-DWBA
7. Ohmura et al. [46]: CRC for deuterons
8. Ascuitto et al. [61]: ZR-CCBA using source terms
9. Mackintosh [62]: ZR-CRC for deuterons and protons

10. Bang and Wollesen [60]: two-step ZR-DWBA.
11. Toyama [64]: two-step ZR-DWBA
12. Schaeffer and Bertsch [63]: two-step ZR-DWBA
13. Rösel et al. [35], extended by Rawitscher [36]: AROSA - CC for Coulomb excitations
14. Cotanch and Vincent [41]: CRC for deuterons
15. Raynal [51] and [38]: General purpose inelastic CC and ZR-CC
16. Kunz [65], and later Comfort [66]: CHUCK - General purpose CC (inelastic and ZR)
17. Nagel and Koshel [43]: OUKID - EFR-CCBA for light ions
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18. Kawai [50]: CRC for deuterons
19. Baltz [67]: QUICC - Inelastic CC for heavy ions
20. Imanishi [68]: CRC for 12C+13C reactions
21. Tolsma [5] and [37]: PIECANSOL - Inelastic CC for heavy ions
22. Toyama and Igarashi [69]: TWOSTP - 2-step ZR- and EFR-DWBA for light ions, and

Igarashi: TWOFNR/PTFF - 2-step EFR-DWBA for sequential and simultaneous transfers
of two nucleons for light ion reactions.

23. Thompson [49]: CRC for deuterons
24. MacFarlane, Pieper and Rhoades-Brown [52]

PTOLEMY/1 - Inelastic DWBA and EFR-DWBA for heavy and light ions
PTOLEMY/2 - General purpose inelastic CC for heavy ions

25. Kunz : CHORK - ZR-CC, and NR-CC for heavy ions
26. Thompson [34]: FRESCO - General purpose CRC for light and heavy ions
27. Clarke [70]: a new ‘zero-angle’ approximation for CC finite-range transfers (i.e. ‘ZA-CC’)

Note that it is sometimes difficult to put these developments in a definite chronological order.
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