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PROGRAM SUMMARY

Title of program: BESSCC
Catalogue number: ABBM

Program obtainable from: CPC Program Library, Queen’s Uni-
versity, Belfast, N. Ireland (see application form in this issue)

Computer: NAS 7000 at Daresbury Laboratory. Also tested on
CRAY-1, ATLAS-10, IBM 3081, CYBER 205, GEC 4190,
CDC 7600, VAX 750, Zenith 248 and IBM PC/AT

Operating system: MVS

Programming language used: FORTRAN 77 with complex
arithmetic in the required precision

High speed storage required: 360 kbytes, with 10520 bytes for
BESSCC

No. of bits in a real number: 64

Peripherals used: reader, printer (neither used in BESSCC
itself)

No. of lines in combined program and test deck: 527 (1/3 are
comments)

Keywords: general purpose, Bessel, continued fraction, Temme,
cylindrical, Miller’s algorithm, Steed’s method, backward re-
currence, Airy, Kelvin, modified

Nature of physical problem
The BESSCC subroutine calculates the modified Bessel func-
tions I,(z) and K,(z) (and derivatives) for complex argument

z and a sequence of real orders », v+1,...,v'+ N -1 for
integer N > 1. These functions arise in the solutions of poten-
tial problems in spherical and cylindrical coordinates. They
can also be used to calculate ordinary Bessels J,(z), Y,(z),
spherical Bessels j,(z), y,(z), Kelvin and Airy functions.

Method of solution
For large arguments z, Temme’s algorithm [1] is used to find
K,, K] and I, 1. The I,(z) values are recurred upward (if
this is stable). For moderate z, K, and K, are found using
Temme’s method, and Miller’s method is used to find 1, /1,,
with the I, normalised by the Wronskian with X,. For small
z, Miller’s method is again used for the I,, and a Neumann
series for the K, (z).

Upward recurrence of the K, is always stable, and down-
ward recurrence for the I, is used in the second and third
cases.

Restrictions on the complexity of the problem

The functions are determined only for real order »> —3.
Reflection formulae are given for » < —3, and for complex
order » the procedure COULCC of ref. [2] is available. The
routines are less efficient when both order and argument are

large, becoming noticeable when v + N > |z /2 >1000.

Typical running time
The test deck takes 0.44 s of execution time on a NAS 7000.

Accuracy

In general, results within two digits of machine accuracy may
be obtained, subject to the correct set of constants being
included. The code is released with constants allowing accu-
racies of up to 24 significant digits. For calculations of arbi-
trary precision and/or of more than 24 digits, an appended
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program ZETA can be easily used to calculate the required
constants.

On IBM machines, BESSCC has been compared with the
similar package of Campbell [3] and with the larger suite of
programs of Amos [4], and no discrepancies are found greater
than 10714, A table is given of the accuracies obtainable with
different machines.

LONG WRITE-UP
1. Introduction

Algorithms are presented for the computation
of the modified Bessel functions 7,(z) and K,(z),
of real order v, and complex argument z. From
these, other Bessel functions can be computed,
namely J,, Y,, j,, »,, the Airy functions and the
Kelvin functions (section 2.6). The accompanying
subroutine BESSCC is written in FORTRAN 77,
and for the required relative accuracy calculates
1,(z), I)(z), K,(z) and K;(z) for a specified
sequence of orders », v+ 1,...,#»+ N — 1. An in-
teger variable IFAIL returns the number of orders
which could not be calculated because overflow or
underflow would occur. Optional exponential scal-
ing may be employed to reduce the likelihood of
this error occurring.

Stored constants in the program are given to 24
digits of precision, and give the continued fraction
expansions for the functions g;(¢) and g,(») (see
section 3.3). The number of these terms required is
proportional to the required number of digits of
precision, over the range || < 3. Should greater
precision be needed, the small program ZETA
(appended to the accompanying CPC deck) can be
used. This program calculates the BESSCC con-
stants using a working precision approximately 6
digits greater than the target Bessel precision, and
thus enables Bessel calculations of arbitrary accu-
racy subject to the machine arithmetic being avail-
able. The ZETA routines could have been called
directly from BESSCC, but for the sake of the
speed of the Bessel calculations they were sep-
arated in the above manner.

The subroutine BESSCC (with the associated
function CF2E) comprises 473 lines of code and
requires 10520 bytes of storage. The remainder of
the deck consists of a test program, and the pro-
gram ZETA.
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2. Bessel function expansions
2.1. Temme’s algorithm for the irregular solutions

As explained in refs. [1,2], the sequence of
values

P, =,F(a+k, b+k;; u)

of the confluent hypergeometric function satisfy
both the recurrence relations

P, = [1 - (ak+bk+ 1)“]Pk+1 _"2akkak+2’

where a,=a+k and b, =5b+k, and Temme’s
sum rule

C.P,=1 (2.1)
k=0

where
CG=1and C, ., = —a,buC,/(k+1).

These sums are convergent when a > 0,0 <b <
1, and Re(u) <0 with |u| <« 1, so Miller’s back-
ward recurrence method can be used to calculate a
normalised sequence of values P, for k from some
starting order M down to 0. We use an extension
of Steed’s method of section 3.1, which finds the
upper order M automatically. As in ref. [3], the
ratio abP,/P, is the logarithmic derivative of
»Fy(a, b;; u) with respect to u, and this gives [2]
the continued fraction CF2° for ¢ = +1 by

CF2°=io[1+ 2abuP{/P;], (2.2)

where [4] the ratio P,/P, converges to a given
accuracy with approximately half as many terms
as needed for the sum (2.1).

The function P for a=31—-v», b=13+», and
u= —o0/(2z) can be found for both ¢ = +1 and
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—1, but when Re(z) > 0 the 0 = +1 Temme sum
converges more quickly, giving

K, =3n(n/(22)) e R (2.3)

and

K//K,=iCF2* —1/(2z). (2.4)

When |z| > 10, the functions P, also con-
verge by this method. We need however only find
the ratio P; /P, , if we already have the value
of P/, because of the Wronskian relation
Py Py [CF2* — CF27]=2i. Then, guided by our
Coulomb wavefunction results [2,5] as to where we
can calculate the regular solution F (equivalent to
I) as the difference of two irregular solutions H*
and H~, we have the new results:

1,(z) =1(m/(22))"? e*P;[1 — H*/H"], and
I)/1,=i[CF2~ —(H*/H™)CF2*|/[\-H*/H"]
-1/(22),

where the ratio H*/H ™~ of the Coulomb functions
is

H*/H =exp[—2z+ (v—1)ni] Py /Py .

2.2. Recurrence relations, and Miller’s method for
1/1,

The functions I, and exp(ymi)K, both satisfy
the same recurrence relations {6, egs. 9.6.26]:

L(2) = L,1(2) + (v + 1) /2)1,,4(2)

and
1(z) = (v/2)1,(2) + 1,.4(2),

with equivalent relations for upward recurrences.
These are stable provided that the functions do
not monotonically decrease in the direction of
recurrence. The stable directions are downward
recurrence of the I,(z) throughout the complex z
plane, and upward recurrence of K,(z) in the
right-hand half plane Re(z)>0. Furthermore,
when |z| is large, the values of I,(z) decrease
only very slowly as » increases from near zero
until approximately as far as 0.6|z|. For large
| z {this enables BESSCC (in contrast to the meth-

ods of refs. [1,8]) to recur the I, upward for some
distance with very little loss of accuracy, provided
the moduli |7, | are monitored to avoid the errors
rising by more than, say, one order of magnitude.

From the downward recurrence relations for
the I, we have Miller's backward recurrence
method, as extended by Gautschi [9] to iterate on
f,=1)/1. For a starting order M the method uses

fovk—1= (v+k-1)/z + 1/[(”+ k)/z +fv+k]

for k from M down to 1, beginning with (for
example)

fau=+M)/z+z/[2(v+ M+1)].

We adopt Sookne’s method [10] to find the start-
ing order M by performing a preliminary upward
recurrence of I; from J=max(», |z|) and I,_,
=0, I; =1, using the equation

Ij+1 = (zj/z)lj_ Ij—l

until a modulus |7, ,,| is found that is greater
than €172 for a relative accuracy e in the resulting
ratio f,. Although this method requires more work
than the use of pre-computed starting orders (as is
done in refs. [7,8]), it does enable calculations to
attain any required precision. We found Sookne’s
method to be quicker using the extended Steed’s
method of section 3.1 since less work is involved
at each step.

2.3. Small-z sum rules for 1,, and Neumann series
for K,

For Re(z) < 2, the normalising series

0

Z umIv+2m(z) =1

m=0

(2.5)

can be used, with

u,=(-1)"2/2)" (v+2m)T(v+m)/m!,
that is, with

uo=12/2)"T(1+v»)

and

U= —tp_1[(y+2m)/(v+2m—2)(v+m)/m.
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The same 1, ,,,,(z) values can be used in a
Neumann series to give the irregular function
K ,(z), following Goldstein and Thaler [11], and
Campbell [7] but with simplifications that arise
because BESSCC calculates the 7 and K Bessels
together and preserves common terms:

K2 =doL(2) + 5 (4 2m) Dyl (),

(2.6)

with

do = gi(mz) + uy sinh[v(g,(v) + n(2/2))] /n,
g, (1) =1m[t71 = cosec(r)],

g, (»)=»"1In T(1+»),

D, =ui(v+2)/(1-v»)

and

D, =D, ,2v+m—-1)(v+m—1)/(m(m—vr))

for m>2.

2.4. The Wronskian relation

At each order », the functions satisfy the rela-
tion
IK,—K]I,=1/z, (2.7)
and this is used in BESSCC to calculate K, from
1, I] and K,. This is provided that I, is not near
a zero, as otherwise there would be significant
cancellation errors: in such cases BESSCC
evaluates K, from K, and K, /K, via the con-
tinued fraction CF2* that is already coded as in
section 2.1.

2.5. Analytic continuations for Re(z) <0 and v <0

The analytic continuation for Re(z) < 0is given
by egs. 9.6.30 and 31 of ref. [6]:
I(tz)=r1,(z) and
K,(tz) =t""K,(z) — =i Im(¢") cosec(vm)I,(z)

where ¢ = exp( £ mi). These transformations are in-
cluded in the code.

For negative v one can use

I_J(z)=1I(z)+(2/n)sin(v7)K,(z) and
K_,(2)=K,(z).

2.6. Other Bessel functions in terms of I (z) and
K,(z)

The modified functions can be used as a basis
to express all the related solutions of the various
forms of Bessel's equation. Abramowitz and
Stegun [6] list the relevant formulae in chapters 9,
10.

2.6.1. Cylindrical Bessel functions J (z) and Y,(z)
By inverting eq. (9.6.3), p. 375 of ref. [6] there
follows, using for the 90° rotation p = exp(im/2),
J(z)=pL(2p7")
=p’L(2p°)

for —n/2 <arg z<m,

for —m <arg z<m/2,

with the plane being cut along the negative z-axis.
Identical expressions follow for Y,(z) in terms of
the irregular solution K,(z). The derivatives of J
and Y are readily found from I/ and K. (Prob-
lems which arose in the evaluation of the Coulomb
functions [2,5] are absent here.)

2.6.2. Spherical Bessel functions j,(z) and y,(z)
The defining relation [6, 10.1.1] is in terms of
the J, Y functions:

3(2)=y(m/2) Jp10(2),
y(z)= (%"T/z) Y;+1/2(z),

where vz has a cut along the negative real axis.
This route to the spherical Bessels can be followed
for real values of » and complex z values, but if
integer orders with complex arguments are re-
quired then a simpler method is presented in fig.
1, which gives the self-contained subroutine
SBESJH. For integer n > 0 it computes the regular
solution j,(z) and the irregular Hankel solution
h,(z) (and their derivatives with respect to z) in
the half-plane Im(z)> —3 (where h{’(z) is ex-
ponentially decaying). The remaining spherical



1.J. Thompson, A.R. Barnett / Modified Bessel functions 249

SUBROUTINE SBESJH (X,LMAX,XJ,XJP, XH1, XH1P,TFAIL)
* 1.J.Thompson
el 31 May 1985,
**%  COMPLEX SPHERICAL BESSEL FUNCTIONS from 1=0 to 1=LMAX
b for X in the UPPER HALF PLANE ( Im(X) > -3)

b X301 = 3/ (x) regular solution: XJ(0)=sin(x)/x
bl XJP(1) = d/dx j/1(x)
bl XHL(1) = h(1)/1(x) irregular Hankel function:

el XHIP(1) = d/dx h(1}/1(x) XH1(0) = jO(x) + i. yO(x)
=(sin{x)-i.cos(x))/x
= -j.exp{i.x)/x

***  JFAIL

—

-1 for arguments out of range
0 for all results satisfactory
0 for results ok up to & including order LMAX-IFAIL

*
*
*
Vor o

Using complex CFl, and trigonometric forms for 1=0 solutions.
**%x  Note real routine in CPC 21 {1981) 297

OO0 O0O000a0000
*
*
*

IMPLICIT COMPLEX*16 (A-H,0-2)

PARAMETER (LIMIT=20000)

DIMENSION XJ(0:LMAX) ,XJP{0:LMAX) XH1{0:LMAX),XH1P(0:LMAX)
REAL*8 ZERO,ONE,ACCUR, TM30,ABSC

DATA ZERO,ONE/ 0.0D0,1.000 /, ACCUR /1.0D-12/, TM30 / 1D-30 /,
# cI / (0po,100) /

ABSC(W) = ABS(REAL{W)) + ABS(IMAG(W))

IFAIL= -1

LF(ABSC(X).LT.ACCUR .OR. IMAG({X).LT.-3.0) GO T0 &

XI = ONE/X

= XI + XI

= LMAX*XI

PL + XI

F+F+XI

ZERO

F

°

L=1,LIMIT

B-D

B - ONE/C

IF (ABSC(D).LT.TM30) D
IF(ABSC{C).LT.TM30) C

CoDgOo®M U xE

S
Won e wowom

™30
TM30

=B+ W
F(ABSC(DEL-ONE) .LT.ACCUR) GO TO 2
IFAIL = -2

GO T0 5

D
D
F
B
1

~

™30
F * XJ(LMAX)

XJ (LMAX)
XJP(LMAX)

C
€ *** Downward recursion to 1=0 (N.B. Coulomb Functions)
c

DO 3 L = LMAX-1,0,-1
XHL) = PL*XJ(L+1) + XJP(L+1)
XJP(L)= PL*XJ(L) - XJ(L+1)
3PL=7PL~XI

C *** Calculate the 1=0 Bessel Functions
XJ0 = XI * SIN(X)
XHL(0) = EXP(CI*X) * XI * (-CI)
XHIP(0)= XH1{0) * (CI - XI)

c
C *** Rescale XJ, XJP, converting to spherical Bessels.
C *** Recur  XHI1,XHIP AS spherical Bessels.
C

= ONE/XJ(0)

PL = XI

D04 L = 0,LMAX

XIL) = XJO*(W*XJI(L))

XIP(L) = XJO*(WXJP(L)) - XI*X3(L)
IF(L.€Q.0) GO TO 4

XHI(L) = (PL-XI) * XWI(L-1) - XHIP(L-1)

PL = PL + XI
XHIP(L)=- PL * XHL(L)  + XHI{L-1)
4 CONTINUE
IFAIL = 0
RETURN
5 WRITE(6,10) IFAIL
10 FORMAT( 'SBESJH : IFAIL = ',14)

RETURN
END

Fig. 1. A separate routine for spherical Bessels of complex
argument and integer order.

Bessels may be found by
ya(2) =il)n(2) = BP(2)],
hP(z) =hP(z) = 2iy,(2).

2.6.3. Airy functions Ai(z) and Bi(z)
These functions are combinations of Bessel
functions of order 1/3 [6, section 10.4}, namely

Ai(z) = (1/m)(z/3) K, 5(£),
Bi(z) = (V2 /m)[(2n/V3) 1, 5(8) + Ky 5 (8)]

where ¢ =(2/3)z3/2. Near the origin it becomes
more sensible to program eq. 10.4.14 [6] for Ai(z)
directly as the difference between the I_; ; and
I, ;; functions, using [6, 9.6.10] since the singulari-
ties at z = 0 can be controlled.

2.6.4. Kelvin functions ker(x), kei(x), ber(x), bei(x)

For practical purposes these are functions of
the real argument x lying between 0 and about 10.
The various real Kelvin functions are the real and
imaginary parts of I,, and K,, functions of
argument +xi'/%;

ker(x) +i kei(x) = K, (xi'/?),

ber(x) +i bei( x) = I,(xi'/?),

ker;(x) +1i kei,(x) =17'K,(xi!/?),

ber,(x) +1i bei,(x) =il (—xi/?).

Kelvin functions of order » relate to the same

order modified Bessel functions together with a
phase factor of i,

3. Numerical methods

3.1. Forward evaluation of continued fractions and
Temme’s sum

Given a recurrence relation P,_,=b,P, +
a, 1P, such as that in section 2.1, Steed’s al-
gorithm [3] can be used to evaluate the continued
fraction

P1/Po=1/(b1+a2/(b2+a3/"'))
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forwards from k=0 as the successive sum P, /P,
=X¥h,, a method not requiring a precalculated
starting order which varies according to the accu-
racy desired. The method has been extended to
calculate a forward approximation to the sum
required in Temme’s method,

N
Sy= Z Ci P/ Py

k=1
as
N
Sy= Z Q:h;
i=1
where
Q= E Crdx
k=1

and ¢, is the forward sequence ¢,=(g,_,—
b.q.)/a, ., starting from g, =0 and ¢, = 1.

3.2. Calculation cases by (z, v) region

There are three ‘cases’ for combining the vari-
ous expansions of section 2. First, the argument z
is reflected if necessary into the right-hand half
plane Re(z) > 0, and a »_;, is found with |»;, | <
1 such that » — v, is integral. The following rules
are chosen to minimise boundary errors for selec-
tions of »,,, values in the range —0.5 to 0.5.

For large arguments, |z|>25, and », <
0.6]z|, case 1 uses Temme’s algorithm for both
the P} and P, sequence at v, to find K, K,
and I,, I]. The I,(z) values are recurred upward
while this is stable. Should instabilities be de-
tected, the remaining values are calculated by the
slower method of case 2.

Case 2 is for moderate |z| > 3 and 10Re(z) +
Im(z) > 20, when the values K, and K, are found
using Temme’s algorithm at »,,, for the P; as in
case 1, and Miller’s method is used to find loga-
rithmic derivative I, /I, at v,,.. The I, are nor-
malised using the Wronskian with the K, at v .

For small |z| <3, or 10Re(z) + Im(z) <20,

case 3 is used, with Miller’s method and the sum -

rule of eq. (2.5) for the I, and I/, and a Neumann
series for the K, (z) at »_,,. The value of K, at

Im(z)
E

REFLECTION RUES—=——
€ R max (25, 15VUmax)

-3

REFLECTION RULES——r

L-30
Fig. 2. Parameter cases for BESSCC calculations.

Yoin 18 found by the Wronskian, unless 7, is near
a zero, in which case CF2 is called again.

Upward recurrence of the X, and K, is always
stable, and downward recurrence for the I, and I
is used in the second and third cases. The effects
of these rules for calculations in the complex z
plane are shown in fig. 2, where it is assumed that
the upward recurrence of the I, in case 1 proves to
be stable.

3.3. Continued fractions for g,(t) and g,(v): the
ZETA program

The functions
g:(1) =1a[t ' = cosec(t)] for t=m»
and
g&(»)=v'InI'(1+»)

do not have closed form expressions over the
range |»| < 3. For that reason we start with their
series expansions

(1) =dn ¥ (=1)"2(2% 1) B, /(2n)!
n=0
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and
ga(r) = —y— g(—w"gﬂ/(nﬂ)

where B,, are the Bernoulli numbers [6, table
23.2],

y=—¢@(1) =0.57721...

is Euler’s constant, and
oo

G = (-1 (1) /= X
k=1

is the Riemann zeta function for integer argu-
ments [6, table 23.3].

To calculate these functions to arbitrary accu-
racy, we use the fact that the Bernoulli numbers
have exact rational values, and that the poly-
gamma function y{")(z) has an asymptotic expan-
sion in terms of the same Bernoulli numbers. We
have therefore adapted a digamma (¢©) code of
Kolbig [12] to calculate polygamma functions of
arbitrary order n, in order to calculate the series
coefficients to the accuracies required.

Having the series expansion for the required
function, we have calculated the coefficients of the
corresponding continued fraction using the trans-
formations and code DFRACT of ref. {13]. The
continued fraction coefficients are calculated by
the program ZETA, and inserted in BESSCC as
DATA statements. From fig. 3 we see that the
number of terms required is a linear function of
the number of digits of accuracy required, and the
equations giving the straight lines in the figure are
built into the BESSCC code.

V4 complex argument z, non-zero
XNU real

minimum order v > — }

20

~log,y (ACC)

0 . t s 1 . 1
0 10 20 30
No.of Continued-Fraction Terms

Fig. 3. Number of terms required vs. number of digits of
*  accuracy required.

4. Program description
4.1. The BESSCC calling sequence

The calling sequence for the program is (see fig.
4)
CALL BESSCC(Z, XNU, NL, FI, FK, FIP,
FKP, MODE, ACC, IFAIL)

where the arguments have the following type and
meaning:

NL integer number of orders », »+1,..., v+ NL — 1 required
FI complex array dimension NL, regular Bessel 7,(z)
FK complex array dimension NL, irregular Bessel K,(z)

FIP complex array
FKP  complex array
MODE integer

dimension NL, regular derivative I,(z)
dimension NL, irregular derivative K(z2)
|[MODE | gives the selection of I, K, I’ and K,

and MODE < 0 selects exponential scaling:

if [MODE|
-1 LK, I' K

functions are computed and stored.
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=2 LK
=3 LI
=4 ] only.

if MODE <0 then the values returned are scaled by an exponential factor (dependent only on z) to
bring nearer unity the functions for large |z| and small |»| < |z}:

so FI=exp(—|Re(z)|)* I
FIP =exp(— [Re(z)|) + I’
and FK = exp(Re(z)) * K
FKP = exp(Re(z)) * K’

ACC  real
If ACC > 0.0001,

target relative accuracy

or the code finds that 1.0 + ACC = 1.0,
then a default ACCDEF = 1079 is used.

IFAIL integer

IFAIL in output: —2 = argument out of range

classification of errors on output:

— 1= one of the continued fractions failed,
or arithmetic check before final recursion
0= All calculations satisfactory
>0: results available for orders below

position NL-IFAIL in the output arrays.

Further information about performance of BE-
SSCC is provided by a named common block
/BSTEED/ containing in order ACCUR
(REAL #* 8) and the integers NFP, NPQ(2) and
KASE.

ACCUR = adopted target accuracy for the calcu-
lation, normally ACC.

NFP = starting order M for Miller’s method for
regular solution

NPQ(1) = number of terms required for Temme’s
sum for P*

NPQ(2) = number of terms required for CF2~,
and

KASE =1, 2 or 3 according the case of section
3.2

4.2. Test deck

The test deck contains a main program to call
BESSCC for a succession of z, » and NL combi-
nations determined by the data read in. Prior to
calling BESSCC, the main program finds the smal-
lest ACC such that 1.0 + ACC = 1.0, and it prints
its value to remind the user of his machine’s

maximum precision. BESSCC requests this target
accuracy in the Bessel calculations, though experi-
ence suggests that the achieved accuracy will be
bounded by, at best, 50 times the ACC limit.

4.3. Operation of the ZETA program

The ZETA program included at the end of the
CPC deck is a stand-alone program that calculatgs
the continued fraction coefficients for the fune-
tions g,(¢) and g,(») as described in section 3.3.
In order to obtain 24 digits of accuracy for these
coefficients, the program is written to use the
quadruple-precision complex arithmetic (COM-
PLEX = 32) that is available with the IBM VS-
FORTRAN compiler.

The inputs to the program are (in free format)
the real numbers ACCUR and ACC, where AC-
CUR is the relative precision available for the
ZETA program to use (1Q — 33 with VS FOR-
TRAN as above), and ACC is the maximum target
accuracy that will be used in the BESSCC pro-
gram (e.g. 1Q — 24). The program then outputs on
a ‘punch’ file 7 the DATA cards needed for



LJ. Thompson, A.R. Barnett / Modified Bessel functions 253

SUBROUTINE BESSCC(ZZ,XNU,NL, FI,FK,FIP,FKP, MODE1,ACC,IFAIL)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCE
COMPLEX 1,K BESSEL FUNCTIONS PROGRAM USING STEED'S METHOD

1. J. Thompson Bristol JULY 1986

CpC 8 (1974) 377-395
CPC 11 (1976) 141-142
CPC 27 (1982) 147-166
CPC 36 (1985) 363-372
CPC 21 {1981) 297-314
JCP 64 (1986) 490-509
cPe ..

original program RCWFN in
+ RCWFF in
+ COULFG in
+ CouLcc in
description of real algorithm in
description of complex algorithm
this version written up in

BESSCC returns 1,K,1',K' for complex Z, real XNU, & integer NL > O
for integer-spaced orders XNU to XMU = XNU + NL - 1

The first order XNU must be > -0.5

if |MODEL| get

K, I', K for integer-spaced NU values

1 I,

2 I,K unused arrays must be dimensioned in
3 I, n

1

I

wonowon

call to at least length (1)

[ C
C o
C C
o C
C [
C C
C C
[ C
[ [
[ C
C C
C C
C C
C [
c C
c [
C C
C C
C C
c C
[ [
C if MODE1<Q then the values returned are scaled by an exponential C
[ factor (dependent only on Z) to bring nearer unity C
c the functions for large éli, small |XN} < (2] c
C So define SCALE = é 0 if MODEL > 0 C
C R C
c C
[ C
C [
C C
C C
[ c
C [
c C
[ C
C C
[ C
[ [%
[ C
[ [
C [
C c
C [%
C C
C

C

C

C

C

*

EAL(Z) if MODEL < 0
then FI = EXPg-ABS SCALE g

FIP= EXP
FK = EXP
FKP= EXP

-ABS (SCALE
SCALE%
SCALE

a

1
1
an K
K

R

Precision: results to within 1-2 decimals of 'machine accuracy',
depending on the value of ACC in the calling sequence.
1f ACC is too small or too large, a default ACCOEF is used

BESSCC is coded for REAL*8 on IBM or equivalent ACC > 2D-16

Use IMPLICIT COMPLEX*32 & REAL*16 on VS compiler ACC > 1Q-24
{More GAM & CSC coefficients can be provided for ACC = 1Q-31)
For single precision CDC, CRAY etc reassign REAL*8=REAL etc.

IFAIL in output: -2 = argument out of range
-1 = one of the continued fractions failed,
or arithmetic check before final recursion
0 = A1l Calculations satisfactory C
ge 0 : results available for orders up to & at C
position NL-IFAIL in the output arrays. C
C
C

CCCCccceecececceeccecceeecceeecececccccceocecececcceeccceccecceccececcee

Fig. 4. Subroutine BESSCC, with introductory comment cards.

C DATA statements for target accuracies up to 1.00-14
DATA GAM /

N N R - ]

.77215664901532860-01 ,-5.
.4248868896592017D+00, -9.
.7734772729488805D-02, 6.
0355483535978465D-01, 3
6760985331801693D-01, 3
.8720963846648549D-01, 3
0380577436752762D-01, 3.

2

2

2

11147343655344830-01,
.18662039933615180-01,
.2113656863567650D-01,
.27851640177127570-01/
DATA CSC, P12 /
1.6666666666666667D-01,-1.
1.1224489795918367D-02, -2.
3.88183101431740270-03,-1.
1.9590158400391263D-03,-7.
1.1797974364635126D-03 , -8.
PARAMETER (NGAM=20, NCSC= 9)

>3 3 M > I B X XX

> ¢ X > >

C  DATA statements for target acc
DATA GAM /

> 3¢ >

1.67609853E-01, 3.42315307
DATA CSC, P12 /

X 1.66666667E-01,-1.16666667
X 3.88183101£-03,-8.90891021
PARAMETER(NGAM=11, NCSC= 5)

7721566490153286D-01,
37711576724909400-01,
13061585835768720-01,

.8334536763573750D-01,
.4231530708797397D-01,
.0441764520575319D-01,

0369222399529579D-01,

.8154925329861021D-01,
.88759992690339980-01,
.7119312296069024D-01,

16666666666666670-01,
8396206967635539D-02,
25669016828591460-02,
0586744483313501D-03,
9089102067615374D-06/

uracies up to 1.0E-07

-5.77215665€-01,-5.77215665E-01, 1.42488689E+00,-9.37711577E-01,
-9.77347727E-02, 6.13061586E-01, 1.03554835€-01, 3.83345368E-01,

E-01, 1.87209638E-01, 3.04417645€-01/

E-01, 1.12244898E-02,-2.83962070E-02,
E-06/

Fig. 5. Output of program ZETA for accuracies 10714 and
1077

LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL&LLLLLL&LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLC
[
Machine-dependent parameters :

ACC convergence criterion for continued fractions.
Except near zero-crossings of the functions,
the relative errors of the returned functions should be
less than max{ACC, {50 + imag(Z))*unit-roundoff )

c

C

[

[

C

C

C
FPMAX magnitude of lar%est floating point number * ACC [%
FPMIN magnitude of smallest floating point number / ACC €
FPLMIN  I1n{FPMIN) C
FPHMIN  sqrt (FPMIN) C
LIMIT max. no. iterations for CFl, CF2 continued fractions C
(1f XNU+NL > 0.35%{Z{, then [Z] is limited to LIMIT). E
C

C

C

C

C

C

[

c

C

C

[

(o

c

C

C

C

[

%

C

C

[

C

C

[

C GAM, CSC are the coefficients of the continued fraction form

C of the diagonal Pade approximants for

o In{Gamma{l+nu))/nu and 1/sin{pi.nu) - 1/(pi.nu} resp.
C The number of terms required is a linear function of
C the number of digits accuracy, i.e. of log(ACC) .
C The given GAM & CSC parameters are sufficient for ACC > 1D-24
C For ‘gfixed accuracy worse than this, expressions in the code

C involving ACC may be pre-evaluated, and NGAM & NCSC reduced.

C

g Associated routine CF2E (appended)
C Intrinsic functions :
C {Generic names)

C Complex

C

Cl

C
MIN, MAX, SQRT, REAL, IMAG, LOG, EXP,  C
ABS, MOD, SIN, COS, INT c
LOG, EXP, SIN, SQRT, DCMPLX E

C

cceeeeceececccecceeececccecceececceccceccececeeccccceccecececccecceecceccect

Fig. 6. Subroutine BESSCC, machine-dependent parameters.

BESSCC, provided that sufficient rational
Bernoulli numbers have been included in the
DATA statements of the subroutine LOGAM. We
have included 15 such numbers, sufficient for
target accuracies ACC as small as 10~ %; another
15 numbers are given in table 23.2 of ref. [6] if
required. Fig. 5 shows the results of running the
ZETA program for accuracies 10”7 and 10" in a
FORTRAN form ready for insertion into the BE-
SSCC deck.

5. Machine variants
5.1. The version in the CPC program package

The published version of BESSCC is for compi-
lation with the IBM VS FORTRAN 77 compiler,
with double-precision complex type (COMPLEX
* 16) available and the generic functions of fig. 6.
Unfortunately, FORTRAN 77 does not define a
DOUBLE COMPLEX standard, so, for conveni-
ence, statement functions for AIMAG and
CMPLX have been defined.

5.2. Changes necessary for different machines and
different precisions

Variants decks have been prepared for the fol-
lowing systems and precisions:
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(a) single precision for CRAY, CYBER 205 and
CDC 7600, with 14 digits of precision (ACC >
1E — 14),

(b) single precision with the pure FORTRAN 77
standard, for use with IBM and GEC com-
pliers and ACC > 1E - 7,

(¢) quadruple precision for IBM VS-FORTRAN,
ACC>1Q - 24,

(d) Lahey’s F77L v2.20 FORTRAN 77 for IBM
PC/AT or Zenith 241 /248.

The differences between these decks and the CPC
version are can be summarised by:
(a, b) Remove AIMAG and CMPLX statement

functions (lines 1290, 1300)

Change D+ and D — exponents to E +
and E — (this can be done by a global
string substitution)

Change REAL * 8 to REAL and COM-
PLEX * 16 to COMPLEX

(a) Reduce PARAMETERs NGAM to 20 and
NSCS to 9, deleting surplus coefficients
in the DATA statements.

(b) Reduce PARAMETERs NGAM to 11 and
NCSC to 6, deleting surplus coefficients
in the DATA statements.

(¢c) Change D+ and D — exponents to Q +
and Q — (this can be done by a global
string substitution)

Change REAL *8 to REAL * 16 and
COMPLEX #* 16 to COMPLEX =* 32

Remove the CMPLX statement functions
(lines 1290, 4220)

(d) Remove AIMAG statement function (lines
1300, 4230) and AIMAG from the
REAL * 8 declarations (lines 900, 4200),
AIMAG is now generic.

It is also necessary to change the DATA state-
ments for FPMAX, FPMIN, FPHMIN, and
FPLMIN as shown in table 1.

Note added in proof

In the Siemens FORTRAN 77 compiler, the
REAL of a COMPLEX=*16 argument gives
a REAL=*4 result, so should be replaced in
BESSCC by DREAL.

Table 1

Machine min ACC FPMAX @ FPMIN » FPHMIN © FPLMIN ¢

IBM VS sp 96 E-7 1.E60 1.E-60 1.LE-30 —-140.0
dp 23D-16 1.D60 1.D-60 1.D-30 —140.0
qp 35Q-33 1.Q60 1.Q-60 1.Q-30 —140.0

CDC 7600/

26600 1.0E-14 1.E308 1.E-279 7.E-140 —669.0
CRAY1 75E-15 1.E2450 1.E-2450 1.E-1255 —5461.0
VAX (D) 14E-17 1.E20 1.E-20 1.LE-10 —46.0

(G) 12D-16 1.D290 1.D-290 1.D—145 —667.0
GEC 4190 sp 12E-7 1.E56 1.E-57 7.E-29 —35.0
Apollo IEEE standard
Zenith 241 /248 running F77L

sp 12E-7 1.E31 1.LE-31 3.E-15 —-71.0
dp 1.2D-16 1.D292 1.D-292 1.D-146 —-672.0 -

% FPMAX = maximum floating-point number * ACC.
® FPMIN = minimum floating-point number / ACC.
© FPHMIN = sqrt(FPMIN).

9 FPLMIN = In(FPMIN).
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TEST RUN OUTPUT

TEST OF THE CONTINUED FRACTION BESSEL ROUTINES

SMALLEST ACC ALLOWED ON THIS MACHINE =

zZ =
BESSCC

F4

BESSCC

Z =
BESSCC

NU
NU
NU
NU
NU

Z =
BESSCC

NU
NU
NU
NU

hnann

0.0100

0

s IFAIL =

0.200 ::
1,200 ::

12.2000

13

1 VFALL =

.100 ::
.100 ::

[
OOWwW=O
-

[}
o

12.2000
TFATL

0.100 ::
1.100 ::
3.100 ::
10.100 :}
30.100 ::

0.0000

13

19

ITAIL =

0.728 ::
1.728 ::
3.728 ::
10.728 ::

Il- 1]
[}

LI LI LI T I ]

.0000, NU(MIN) =
0 ACCUR

= 2.2E-16

3.73712478955D0-01
1.55712058357D-03
5.529517605270-09
5.758335813200-31

.3000,
0 ACCUR =

8.970674903860-02
8.69698296389D~02
6.85137743833D-02
-9.977468635810~03
-5.143145898980-10

NU(MIN) =

2.2E-16

2.22E~16

0.2000000 NL = 11

ITS = 5

0.000000000000+00,
0.00000000000D+00,
0.00000000000D+00,
0.00000000000D+00,

0.1000000 NL = 31
14

178 =

2.91600142087D-02,
3.07378697847D-02,
3.90017257908D-02,
8.63426389444D-03,
4.51443167494D-10,

.3000, NU(MIN)} = 0.1000000 NL = 31
0 ACCUR = 2.2E-16 ITS = AL
1.78327284932D+04 5.79669u47186D+03,
1.73791185986D+04 6.05925271341D+03,
1.728865860900+04 6.11035504245D+03,
1.6845996252u0+04 6.321460722370+03,
1.36197950513D+04 7.75311996307D+03,
1.32965225234D+04 7.669980243870+03,

-1.983412520670+03 1.71639799032D+03,

-1.68776286080D+03
=1.02240160746D-04
-4,43279185418D-05

.2000, NU(MIN) =
0 ACCUR =

—_- AN = O\ = W

.75841206471D-03

. 7Thl489712304D-02
.55051721147D-03
.51154841677D-01

2.2E-16
.13641975378D-05~-
.65692906800D-01~
.656955187340-01~

.57239768101D0-01~

1.955744686150+03,
8.974200405550-05,
2.25772742541D-04,

0.7280000 NL = 11

178 = 41

6.88861621055D-05,
7.544076924360-02,
7.54419584695D-02,
1.484371052390-02,
7.15920149532D~02,
6.028702881497D-02,
1.43871045947D-02,
6.88215189851D-02,

MODE = =2 CAMPBELL: I,K

0 0, KASE = 3

K = 5.67109935638D+00 0.000000000000+00
K = 2.675617621710+02 0.000000000000+00
K = 2.82572849307D+07 0.000000000000+00
K = 8.512803984810+28 0.000000000000+00
MODE = -2 CAMPBELL: !,K

17 0, KASE = 2

K = 1.21799426150D-01-2.67243391440D-01
K = 1.18086238534D-01-2.761944082620-01
K = 8.33220774949D-02-3.41784204172D-01
K = -2.07666335500D+00-8. 32522042385D-02
K = =2.04395729444D+07-1, 234324404614D+07
MODE = 1 ), K NOT SCALED

17 0, KASE = 2

K = 6.12706606217D0-07-1.34435601693D-06
K' =-5.97221917913D-07 1.38184674925D-06
K = 5.,94027580754D-07-1.389383709700-06
K' ==5.74776929678D-07 1.428278753220-06
K = 4,191480119300-07-1.71933026630D-06
K' =-3.67885815542D0-07 1.76u88482602D-06

K = «1,04465628182D-05-U4.18796517616D~07

K' = 1,07444644340D-05-1.34394922805D-06
K = ~1,02820364325D+02-6.20921412232D+01
K' = 2.03066790405D+02~2.09909921000D0+01
MODE = -1 CAMPBELL: |

0 0, KASE = 3

K = 1.18653850886D-01-2.60316218170D-01
K' ==1.11824784834D-01 2.63310015119D-01
K = 1.01954461562D-01-2.67808973632D-01

K' =-9.45510432596D-02 2.69492119711D-01
K = 2,276629885650-02-2.87828013924D-01
K' ==1.45616295959D-02 2.83088u477613D-01
K = =-1,521941617420-01 2.74343890690D-01
K' = 1,16204527658D-01-2,33745529556D-01



Z = -0.0100
BESSCC IFAIL =
NU = 0.200 :: :l
NU = 1.200 :: :'
NU = 3.200 :: |
II
NU = 10.200 :: l’
|
Z = -12.2000 1
BESSCC :: IFAIL =
NU = 0.100 :: 1
NU = 1.100 :: |
NU = 3.100 :: |
NU = 10,100 :: |
NU = 30.100 :: |
Z= =-12.2000 1
BESSCC :: [FAIL =
NY = 0.100 :: L
NU = 1.100 :: II
|
NU = 3.100 :: :'
NU = 10.100 :: I'
I
NU = 30,100 :: :'
Z = 0.0000 50
BESSCC :: IVFAIL =
NU = 0.728 :: |
NU = 1.728 :: |
NU = 3.728 :: |
Z = 0.0000
BESSCC :: {FAIL =
Ny = 0.000 :: |
NU = 1.000 :: |
NU = 3.000 :: 1
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0.0010

NU(MIN) = O,
0 UR

ACC 2. 2€-1

3.069642010390-01 2.
-5.65649286643D+00-U.
-1.368088232500-03-7,

1.53483741857D-01 1,
=-5.35151807941D-09-1,

1.641340875480-06 7.

5.60708812257D-31-2.
=5.89424728u89D-28 1.

g o

3.3000, NU(MIN) = 0.
0 ACCUR =

9.432712817550-02~1.
-9.22117473336D0-02 2,
=7.72126676625D-02 1,
~-6.821002284920-03-1,
-3.49638631398D-10-5.

3.3000, NU(MIN) = 0.
ACC

o CCUR =

1.87512097398D+04-2.
1.84009360523D0+04 3.
1.833069497780+04 4.
1.79749333018D+04-8.
=1.53490406621D+04 3.

1.501589863190+04-3,
~1.35594125416D+03-2,

1.00079952204D+03 2.
-6.95043667u25D-05~1.
-2,76092585288D-05 2.

oo oaedoa

0.2000, NU(MIN) = 0.
0 ACCUR = 2.2E-1

-4,77502977849D-03~1.
-3.07021632175D-02 1.
-3.05854550488D-02 1.

0.0010
0

U(MIN) = 0.

, N
ACCUR =

999990476320~01 1.
853974350840-11 &,

=9,
=-7.
= 3.27248921451D-18-2,

2.2E-16

2.2E-16

2.2E~-16

2000000 NL = 1
6 ITS 5

138039974000-01,
84235536949D+00,
62943677217D-04,
06902710215D-01,
71056691893D-09,
115162434610-07,
29370047001D-31,
750151265290-28,

1000000 NL =
ITS = AL

191156536890-05,
35829599949D-03,
59209248269D-02,
129488030950-02,
88279914916D-10,

1000000 NL =
ITS = 1w

36788996846D+00,
922u87827510+02,
688036598830+02,
06367283363D+02,
16490713176D+03,
18573326496D+03
24529966899D+03,
38157113443D+03,
1691436611921D-01 ,
284207181500-04

7280000 NL =
6 ITS =

0u48754634910-02,
39788410699D-02,
39257032852D-02,

[

Ly

570794830820-07,
99999536316D-04,
08333135791D-11,

NL

0000001
TS

1

31

31

9

9
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MODE = =1 I,K NEAR =Z AXIS
0 0, KASE = 3
K = 4.55520566224D+00-4.31557371451D+00
K' = 1.28945674422D+02~5.05305696684D+01
K = =2,27693457267D+02 1.26967265674D+02
K' =-2.856576516620+0h 1.238426615850+04
K = -2.59660639498D+07 8.29979897272D+06
K' =-8.489892801280+09 1.80697686806D+09
K = 7.34089697059D+28 3.00295324895D+28
K' = 7.11031472570D+31 3,77404L60430D+31
MODE = =2 I,K RE(Z) < 0
17 0, KASE = 2
K = -9.1608886U115D-02-2.81822063752D-01
K = -9.656586590780-02-2.732237778830-01
K = =1.225275352270-01~2. 15242370280D-01
K = -2.71253400693D-02 3.13451421859D-02
K = -3.953974959150-04 4.568996655000-04
MODE = 1 RE(Z)<0,NO SCALING
17 0, KASE = 2
K = =1.82108527669D+04-5.602316882650+04
K' = 1.90357038117D+04 5.459811131620+04
K = =1.91962465132D+04~-5.431392287750+04
K' = 1.985945U56L44D+04 5.29232580676D+04
K = -2.43571447193D+0U~U.278784807790+04
K' = 2.40959535864D+04 U.17722574764D+0h
K = ~5.39222332683D+03 6.23107420760D+03
K' = 6.144153127660+03=5.30226340244D+03
K = =7.86007325769D+01 9.08266966623D+01
K' =-1.99613858260D+02 4.27873301479D+01
MODE = -2 LARGE 1M(Z)
6 3, KASE = 1
K = =5.50253933388D-03 5.57679149416D-02
K = -5.365624958130-03 5.57813925777D-02
K = -U4.756924416800-03 5.58372084014D-02
MODE = -2 A COULCC ERROR
0 0, KASE = 3
K = 7.023684788720+00-1.570795934100+00
K = =9.42477769318D~04~1.00000446421D+03
K = 1.256638292u90+03 8.00000781895D+09



