
Chapter 33

Coulomb Functions
I. J. Thompson1

Notation 742
33.1 Special Notation . . . . . . . . . . . . . 742

Variables ⇢, ⌘ 742
33.2 Definitions and Basic Properties . . . . . 742
33.3 Graphics . . . . . . . . . . . . . . . . . . 743
33.4 Recurrence Relations and Derivatives . . 744
33.5 Limiting Forms for Small ⇢, Small |⌘|, or

Large ` . . . . . . . . . . . . . . . . . . 744
33.6 Power-Series Expansions in ⇢ . . . . . . . 745
33.7 Integral Representations . . . . . . . . . 745
33.8 Continued Fractions . . . . . . . . . . . . 745
33.9 Expansions in Series of Bessel Functions . 745
33.10 Limiting Forms for Large ⇢ or Large |⌘| . 746
33.11 Asymptotic Expansions for Large ⇢ . . . . 747
33.12 Asymptotic Expansions for Large ⌘ . . . . 747
33.13 Complex Variable and Parameters . . . . 748

Variables r, ✏ 748
33.14 Definitions and Basic Properties . . . . . 748

33.15 Graphics . . . . . . . . . . . . . . . . . . 749
33.16 Connection Formulas . . . . . . . . . . . 751
33.17 Recurrence Relations and Derivatives . . 752
33.18 Limiting Forms for Large ` . . . . . . . . 752
33.19 Power-Series Expansions in r . . . . . . . 752
33.20 Expansions for Small |✏| . . . . . . . . . . 752
33.21 Asymptotic Approximations for Large |r| . 753

Physical Applications 753
33.22 Particle Scattering and Atomic and Molec-

ular Spectra . . . . . . . . . . . . . . . . 753

Computation 755
33.23 Methods of Computation . . . . . . . . . 755
33.24 Tables . . . . . . . . . . . . . . . . . . . 755
33.25 Approximations . . . . . . . . . . . . . . 756
33.26 Software . . . . . . . . . . . . . . . . . . 756

References 756

1Lawrence Livermore National Laboratory, Livermore, California.
Acknowledgments: This chapter is based in part on Abramowitz and Stegun (1964, Chapter 14) by M. Abramowitz.
Copyright c� 2009 National Institute of Standards and Technology. All rights reserved.

741



742 Coulomb Functions

Notation

33.1 Special Notation

(For other notation see pp. xiv and 873.)
k, ` nonnegative integers.
r, x real variables.
⇢ nonnegative real variable.
✏, ⌘ real parameters.
 (x) logarithmic derivative of �(x); see §5.2(i).
�(x) Dirac delta; see §1.17.
primes derivatives with respect to the variable.

The main functions treated in this chapter are
first the Coulomb radial functions F`(⌘, ⇢), G`(⌘, ⇢),
H±

` (⌘, ⇢) (Sommerfeld (1928)), which are used in the
case of repulsive Coulomb interactions, and secondly the
functions f(✏, `; r), h(✏, `; r), s(✏, `; r), c(✏, `; r) (Seaton
(1982, 2002)), which are used in the case of attractive
Coulomb interactions.

Alternative Notations

Curtis (1964a): P`(✏, r) = (2` + 1)! f(✏, `; r)/2`+1,
Q`(✏, r) = �(2`+ 1)! h(✏, `; r)/(2`+1A(✏, `)).

Greene et al. (1979): f (0)(✏, `; r) = f(✏, `; r),
f(✏, `; r) = s(✏, `; r), g(✏, `; r) = c(✏, `; r).

Variables ⇢, ⌘

33.2 Definitions and Basic Properties

33.2(i) Coulomb Wave Equation

33.2.1

d2w

d⇢2
+
✓

1� 2⌘
⇢
� `(`+ 1)

⇢2

◆
w = 0, ` = 0, 1, 2, . . . .

This di↵erential equation has a regular singularity at
⇢ = 0 with indices ` + 1 and �`, and an irregu-
lar singularity of rank 1 at ⇢ = 1 (§§2.7(i), 2.7(ii)).
There are two turning points, that is, points at which
d2w

�
d⇢2 = 0 (§2.8(i)). The outer one is given by

33.2.2 ⇢tp(⌘, `) = ⌘ + (⌘2 + `(`+ 1))1/2.

33.2(ii) Regular Solution F`(⌘, ⇢)

The function F`(⌘, ⇢) is recessive (§2.7(iii)) at ⇢ = 0,
and is defined by

33.2.3 F`(⌘, ⇢) = C`(⌘)2�`�1(⌥i)`+1 M±i⌘,`+ 1
2
(±2i⇢),

or equivalently
33.2.4

F`(⌘, ⇢) = C`(⌘)⇢`+1e⌥i⇢ M(`+ 1⌥ i⌘, 2`+ 2,±2i⇢),

where M,µ(z) and M(a, b, z) are defined in §§13.14(i)
and 13.2(i), and

33.2.5 C`(⌘) =
2`e�⇡⌘/2|�(`+ 1 + i⌘)|

(2`+ 1)!
.

The choice of ambiguous signs in (33.2.3) and (33.2.4)
is immaterial, provided that either all upper signs are
taken, or all lower signs are taken. This is a consequence
of Kummer’s transformation (§13.2(vii)).

F`(⌘, ⇢) is a real and analytic function of ⇢ on the
open interval 0 < ⇢ <1, and also an analytic function
of ⌘ when �1 < ⌘ <1.

The normalizing constant C`(⌘) is always positive,
and has the alternative form
33.2.6

C`(⌘) =
2`
⇣
(2⇡⌘/(e2⇡⌘ � 1))

Q`
k=1

(⌘2 + k2)
⌘ 1/2

(2`+ 1)!
.

33.2(iii) Irregular Solutions G`(⌘, ⇢), H
±
` (⌘, ⇢)

The functions H±
` (⌘, ⇢) are defined by

33.2.7 H±
` (⌘, ⇢) = (⌥i)`e(⇡⌘/2)±i �`(⌘) W⌥i⌘,`+ 1

2
(⌥2i⇢),

or equivalently
33.2.8

H±
` (⌘, ⇢)
= e±i ✓`(⌘,⇢)(⌥2i⇢)`+1±i⌘ U(`+ 1 ± i⌘, 2`+ 2,⌥2i⇢),

where W,µ(z), U(a, b, z) are defined in §§13.14(i) and
13.2(i),

33.2.9 ✓`(⌘, ⇢) = ⇢� ⌘ ln(2⇢)� 1

2
`⇡ + �`(⌘),

and

33.2.10 �`(⌘) = ph�(`+ 1 + i⌘),
the branch of the phase in (33.2.10) being zero when
⌘ = 0 and continuous elsewhere. �`(⌘) is the Coulomb
phase shift.

H+

` (⌘, ⇢) and H�
` (⌘, ⇢) are complex conjugates, and

their real and imaginary parts are given by

33.2.11
H+

` (⌘, ⇢) = G`(⌘, ⇢) + i F`(⌘, ⇢),
H�

` (⌘, ⇢) = G`(⌘, ⇢)� i F`(⌘, ⇢).
As in the case of F`(⌘, ⇢), the solutions H±

` (⌘, ⇢) and
G`(⌘, ⇢) are analytic functions of ⇢ when 0 < ⇢ < 1.
Also, e⌥i �`(⌘) H±

` (⌘, ⇢) are analytic functions of ⌘ when
�1 < ⌘ <1.

33.2(iv) Wronskians and Cross-Product

With arguments ⌘, ⇢ suppressed,

33.2.12 W {G`, F`} = W
�
H±

` , F`

 
= 1.

33.2.13 F`�1 G`�F` G`�1 = `/(`2 + ⌘2)1/2, ` � 1.
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33.3 Graphics

33.3(i) Line Graphs of the Coulomb Radial Functions F`(⌘, ⇢) and G`(⌘, ⇢)

Figure 33.3.1: F`(⌘, ⇢), G`(⌘, ⇢) with ` = 0, ⌘ = �2. Figure 33.3.2: F`(⌘, ⇢), G`(⌘, ⇢) with ` = 0, ⌘ = 0.

Figure 33.3.3: F`(⌘, ⇢), G`(⌘, ⇢) with ` = 0, ⌘ = 2. The
turning point is at ⇢tp(2, 0) = 4.

Figure 33.3.4: F`(⌘, ⇢), G`(⌘, ⇢) with ` = 0, ⌘ = 10. The
turning point is at ⇢tp(10, 0) = 20.

In Figures 33.3.5 and 33.3.6

33.3.1 M`(⌘, ⇢) = (F 2

` (⌘, ⇢) + G2

`(⌘, ⇢))
1/2 =

��H±
` (⌘, ⇢)

�� .

Figure 33.3.5: F`(⌘, ⇢), G`(⌘, ⇢), and M`(⌘, ⇢) with ` =
0, ⌘ =

p
15/2. The turning point is at ⇢tp

⇣p
15/2, 0

⌘
=

p
30 = 5.47 . . . .

Figure 33.3.6: F`(⌘, ⇢), G`(⌘, ⇢), and M`(⌘, ⇢) with ` =
5, ⌘ = 0. The turning point is at ⇢tp(0, 5) =

p
30 (as in

Figure 33.3.5).
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33.3(ii) Surfaces of the Coulomb Radial Functions F0(⌘, ⇢) and G0(⌘, ⇢)

Figure 33.3.7: F0(⌘, ⇢), �2  ⌘  2, 0  ⇢  5. Figure 33.3.8: G0(⌘, ⇢), �2  ⌘  2, 0 < ⇢  5.

33.4 Recurrence Relations and Derivatives

For ` = 1, 2, 3, . . . , let

33.4.1 R` =

r
1 +

⌘2

`2
, S` =

`

⇢
+
⌘

`
, T` = S` + S`+1.

Then, with X` denoting any of F`(⌘, ⇢), G`(⌘, ⇢), or
H±

` (⌘, ⇢),

33.4.2 R`X`�1 � T`X` + R`+1X`+1 = 0, ` � 1,

33.4.3 X 0
` = R`X`�1 � S`X`, ` � 1,

33.4.4 X 0
` = S`+1X` �R`+1X`+1, ` � 0.

33.5 Limiting Forms for Small ⇢, Small |⌘|,
or Large `

33.5(i) Small ⇢

As ⇢! 0 with ⌘ fixed,
33.5.1

F`(⌘, ⇢) ⇠ C`(⌘)⇢`+1, F 0`(⌘, ⇢) ⇠ (`+ 1) C`(⌘)⇢`.

33.5.2

G`(⌘, ⇢) ⇠
⇢�`

(2`+ 1) C`(⌘)
, ` = 0, 1, 2, . . . ,

G0`(⌘, ⇢) ⇠ �
`⇢�`�1

(2`+ 1) C`(⌘)
, ` = 1, 2, 3, . . . .

33.5(ii) ⌘ = 0

33.5.3 F`(0, ⇢) = ⇢ j`(⇢), G`(0, ⇢) = �⇢ y`(⇢).

Equivalently,

33.5.4
F`(0, ⇢) = (⇡⇢/2)1/2 J`+ 1

2
(⇢),

G`(0, ⇢) = �(⇡⇢/2)1/2 Y`+ 1
2
(⇢).

For the functions j, y, J, Y see §§10.47(ii), 10.2(ii).

33.5.5

F0(0, ⇢) = sin ⇢, G0(0, ⇢) = cos ⇢, H±
0

(0, ⇢) = e±i⇢.

33.5.6 C`(0) =
2``!

(2`+ 1)!
=

1
(2`+ 1)!!

.

33.5(iii) Small |⌘|

33.5.7 �0(⌘) ⇠ ��⌘, ⌘ ! 0,

where � is Euler’s constant (§5.2(ii)).

33.5(iv) Large `

As `!1 with ⌘ and ⇢ (6= 0) fixed,

33.5.8

F`(⌘, ⇢) ⇠ C`(⌘)⇢`+1, G`(⌘, ⇢) ⇠
⇢�`

(2`+ 1) C`(⌘)
,

33.5.9 C`(⌘) ⇠
e�⇡⌘/2

(2`+ 1)!!
⇠ e�⇡⌘/2

e`

p
2(2`)`+1

.
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33.6 Power-Series Expansions in ⇢

33.6.1 F`(⌘, ⇢) = C`(⌘)
1X

k=`+1

A`
k(⌘)⇢k,

33.6.2 F 0`(⌘, ⇢) = C`(⌘)
1X

k=`+1

kA`
k(⌘)⇢k�1,

where A`
`+1

= 1, A`
`+2

= ⌘/(`+ 1), and

33.6.3
(k + `)(k � `� 1)A`

k = 2⌘A`
k�1

�A`
k�2

,
k = `+ 3, `+ 4, . . . ,

or in terms of the hypergeometric function (§§15.1,
15.2(i)),
33.6.4

A`
k(⌘)

=
(�i)k�`�1

(k � `� 1)! 2F1(`+ 1� k, `+ 1� i⌘; 2`+ 2; 2).

33.6.5

H±
` (⌘, ⇢) =

e±i ✓`(⌘,⇢)

(2`+ 1)! �(�`+ i⌘)

 1X

k=0

(a)k

(2`+ 2)kk!
(⌥2i⇢)a+k (ln(⌥2i⇢) + (a + k)� (1 + k)� (2`+ 2 + k))

�
2`+1X

k=1

(2`+ 1)!(k � 1)!
(2`+ 1� k)!(1� a)k

(⌥2i⇢)a�k

!
,

where a = 1 + `± i⌘ and  (x) = �0(x)/�(x) (§5.2(i)).
The series (33.6.1), (33.6.2), and (33.6.5) converge

for all finite values of ⇢. Corresponding expansions for
H±

`
0(⌘, ⇢) can be obtained by combining (33.6.5) with

(33.4.3) or (33.4.4).

33.7 Integral Representations

33.7.1

F`(⌘, ⇢) =
⇢`+12`ei⇢�(⇡⌘/2)

|�(`+ 1 + i⌘)|

Z
1

0

e�2i⇢tt`+i⌘(1� t)`�i⌘ dt,

33.7.2

H�
` (⌘, ⇢) =

e�i⇢⇢�`

(2`+ 1)! C`(⌘)

Z 1

0

e�tt`�i⌘(t + 2i⇢)`+i⌘ dt,

33.7.3

H�
` (⌘, ⇢)

=
�ie�⇡⌘⇢`+1

(2`+ 1)! C`(⌘)

Z 1

0

✓
exp(�i(⇢ tanh t� 2⌘t))

(cosh t)2`+2

+ i(1 + t2)` exp(�⇢t + 2⌘ arctan t)
◆

dt,

33.7.4

H+

` (⌘, ⇢)

=
ie�⇡⌘⇢`+1

(2`+ 1)! C`(⌘)

Z �i1

�1

e�i⇢t(1� t)`�i⌘(1 + t)`+i⌘ dt.

Noninteger powers in (33.7.1)–(33.7.4) and the arc-
tangent assume their principal values (§§4.2(i), 4.2(iv),
4.23(ii)).

33.8 Continued Fractions

With arguments ⌘, ⇢ suppressed,

33.8.1
F 0`
F`

= S`+1 �
R2

`+1

T`+1 �
R2

`+2

T`+2 �
· · · .

For R, S, and T see (33.4.1).
33.8.2

H±
`
0

H±
`

= c ± i

⇢

ab

2(⇢� ⌘ ± i) +
(a + 1)(b + 1)

2(⇢� ⌘ ± 2i) +
· · · ,

where

33.8.3 a = 1 + `± i⌘, b = �`± i⌘, c = ±i(1� (⌘/⇢)).
The continued fraction (33.8.1) converges for all finite
values of ⇢, and (33.8.2) converges for all ⇢ 6= 0.

If we denote u = F 0`/F` and p + iq = H+

`
0
.

H+

` ,
then

33.8.4 F` = ±(q�1(u� p)2 + q)�1/2, F 0` = u F`,

33.8.5 G` = q�1(u� p) F`, G0` = q�1(up� p2� q2) F` .

The ambiguous sign in (33.8.4) has to agree with that
of the final denominator in (33.8.1) when the continued
fraction has converged to the required precision. For
proofs and further information see Barnett et al. (1974)
and Barnett (1996).

33.9 Expansions in Series of Bessel
Functions

33.9(i) Spherical Bessel Functions

33.9.1 F`(⌘, ⇢) = ⇢
1X

k=0

ak j`+k(⇢),
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where the function j is as in §10.47(ii), a�1 = 0,
a0 = (2`+ 1)!!C`(⌘), and

33.9.2

k(k + 2`+ 1)
2k + 2`+ 1

ak � 2⌘ak�1

+
(k � 2)(k + 2`� 1)

2k + 2`� 3
ak�2 = 0, k = 1, 2, . . . .

The series (33.9.1) converges for all finite values of ⌘
and ⇢.

33.9(ii) Bessel Functions and Modified Bessel
Functions

In this subsection the functions J, I, and K are as in
§§10.2(ii) and 10.25(ii).

With t = 2 |⌘| ⇢,
33.9.3

F`(⌘, ⇢) = C`(⌘)
(2`+ 1)!
(2⌘)2`+1

⇢�`
1X

k=2`+1

bktk/2 Ik

�
2
p

t
�
,

⌘ > 0,

33.9.4

F`(⌘, ⇢) = C`(⌘)
(2`+ 1)!
(2 |⌘|)2`+1

⇢�`
1X

k=2`+1

bktk/2 Jk

�
2
p

t
�
,

⌘ < 0.

Here b2` = b2`+2 = 0, b2`+1 = 1, and

33.9.5
4⌘2(k � 2`)bk+1 + kbk�1 + bk�2 = 0,

k = 2`+ 2, 2`+ 3, . . . .
The series (33.9.3) and (33.9.4) converge for all finite
positive values of |⌘| and ⇢.

Next, as ⌘ ! +1 with ⇢ (> 0) fixed,
33.9.6

G`(⌘, ⇢)

⇠ ⇢�`

(`+ 1

2
)�`(⌘) C`(⌘)

1X

k=2`+1

(�1)kbktk/2 Kk

�
2
p

t
�
,

where

33.9.7 �`(⌘) ⇠
1X

k=2`+1

(�1)k(k � 1)!bk.

For other asymptotic expansions of G`(⌘, ⇢) see
Fröberg (1955, §8) and Humblet (1985).

33.10 Limiting Forms for Large ⇢ or Large
|⌘|

33.10(i) Large ⇢

As ⇢!1 with ⌘ fixed,

33.10.1
F`(⌘, ⇢) = sin(✓`(⌘, ⇢)) + o(1),
G`(⌘, ⇢) = cos(✓`(⌘, ⇢)) + o(1),

33.10.2 H±
` (⌘, ⇢) ⇠ exp(±i ✓`(⌘, ⇢)),

where ✓`(⌘, ⇢) is defined by (33.2.9).

33.10(ii) Large Positive ⌘

As ⌘ !1 with ⇢ fixed,
33.10.3

F`(⌘, ⇢) ⇠
(2`+ 1)! C`(⌘)

(2⌘)`+1
(2⌘⇢) 1/2 I2`+1

⇣
(8⌘⇢) 1/2

⌘
,

G`(⌘, ⇢) ⇠
2(2⌘)`

(2`+ 1)! C`(⌘)
(2⌘⇢) 1/2 K2`+1

⇣
(8⌘⇢) 1/2

⌘
.

In particular, for ` = 0,

33.10.4
F0(⌘, ⇢) ⇠ e�⇡⌘(⇡⇢) 1/2 I1

⇣
(8⌘⇢) 1/2

⌘
,

G0(⌘, ⇢) ⇠ 2e⇡⌘ (⇢/⇡ )1/2 K1

⇣
(8⌘⇢) 1/2

⌘
,

33.10.5
F 0

0
(⌘, ⇢) ⇠ e�⇡⌘(2⇡⌘) 1/2 I0

⇣
(8⌘⇢) 1/2

⌘
,

G0
0
(⌘, ⇢) ⇠ �2e⇡⌘ (2⌘/⇡ )1/2 K0

⇣
(8⌘⇢) 1/2

⌘
.

Also,

33.10.6
�0(⌘) = ⌘(ln ⌘ � 1) + 1

4
⇡ + o(1),

C0(⌘) ⇠ (2⇡⌘)1/2e�⇡⌘.

33.10(iii) Large Negative ⌘

As ⌘ ! �1 with ⇢ fixed,

33.10.7

F`(⌘, ⇢) =
(2`+ 1)! C`(⌘)

(�2⌘)`+1

⇣
(�2⌘⇢) 1/2

⇥ J2`+1

⇣
(�8⌘⇢) 1/2

⌘
+ o
⇣
|⌘| 1/4

⌘⌘
,

G`(⌘, ⇢) = � ⇡(�2⌘)`

(2`+ 1)! C`(⌘)

⇣
(�2⌘⇢) 1/2

⇥ Y2`+1

⇣
(�8⌘⇢) 1/2

⌘
+ o
⇣
|⌘| 1/4

⌘⌘
.

In particular, for ` = 0,

33.10.8

F0(⌘, ⇢) = (⇡⇢) 1/2 J1

⇣
(�8⌘⇢) 1/2

⌘
+ o
⇣
|⌘|� 1/4

⌘
,

G0(⌘, ⇢) = �(⇡⇢) 1/2 Y1

⇣
(�8⌘⇢) 1/2

⌘
+ o
⇣
|⌘|� 1/4

⌘
.

33.10.9

F 0
0
(⌘, ⇢) = (�2⇡⌘) 1/2 J0

⇣
(�8⌘⇢) 1/2

⌘
+ o
⇣
|⌘| 1/4

⌘
,

G0
0
(⌘, ⇢) = �(�2⇡⌘) 1/2 Y0

⇣
(�8⌘⇢) 1/2

⌘
+ o
⇣
|⌘| 1/4

⌘
.

Also,
33.10.10

�0(⌘) = ⌘(ln(�⌘)�1)� 1

4
⇡+o(1), C0(⌘)⇠ (�2⇡⌘)1/2.
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33.11 Asymptotic Expansions for Large ⇢

For large ⇢, with ` and ⌘ fixed,

33.11.1 H±
` (⌘, ⇢) = e±i ✓`(⌘,⇢)

1X

k=0

(a)k(b)k

k!(⌥2i⇢)k
,

where ✓`(⌘, ⇢) is defined by (33.2.9), and a and b are
defined by (33.8.3).

With arguments (⌘, ⇢) suppressed, an equivalent for-
mulation is given by
33.11.2 F` = g cos ✓` + f sin ✓`, G` = f cos ✓`� g sin ✓`,

33.11.3 F 0` = bg cos ✓` + bf sin ✓`, G0` = bf cos ✓`� bg sin ✓`,

33.11.4 H±
` = e±i ✓`(f ± ig),

where

33.11.5 f ⇠
1X

k=0

fk, g ⇠
1X

k=0

gk,

33.11.6 bf ⇠
1X

k=0

bfk, bg ⇠
1X

k=0

bgk,

33.11.7 g bf � fbg = 1.

Here f0 = 1, g0 = 0, bf0 = 0, bg0 = 1 � (⌘/⇢), and for
k = 0, 1, 2, . . . ,

33.11.8

fk+1 = �kfk � µkgk,

gk+1 = �kgk + µkfk,

bfk+1 = �k
bfk � µkbgk � (fk+1/⇢),

bgk+1 = �kbgk + µk
bfk � (gk+1/⇢),

where
33.11.9

�k =
(2k + 1)⌘
(2k + 2)⇢

, µk =
`(`+ 1)� k(k + 1) + ⌘2

(2k + 2)⇢
.

33.12 Asymptotic Expansions for Large ⌘

33.12(i) Transition Region

When ` = 0 and ⌘ > 0, the outer turning point is given
by ⇢tp(⌘, 0) = 2⌘; compare (33.2.2). Define

33.12.1 x = (2⌘ � ⇢)/(2⌘)1/3, µ = (2⌘)2/3.

Then as ⌘ !1,

33.12.2
F0(⌘, ⇢)
G0(⌘, ⇢)

⇠ ⇡1/2(2⌘)1/6

⇢
Ai(x)
Bi(x)

✓
1 +

B1

µ
+

B2

µ2
+ · · ·

◆
+

Ai0(x)
Bi0(x)

✓
A1

µ
+

A2

µ2
+ · · ·

◆�
,

33.12.3
F 0

0
(⌘, ⇢)

G0
0
(⌘, ⇢)

⇠ �⇡1/2(2⌘)�1/6

⇢
Ai(x)
Bi(x)

✓
B0

1
+ xA1

µ
+

B0
2

+ xA2

µ2
+ · · ·

◆
+

Ai0(x)
Bi0(x)

✓
B1 + A0

1

µ
+

B2 + A0
2

µ2
+ · · ·

◆�
,

uniformly for bounded values of
��(⇢� 2⌘)/⌘1/3

��. Here Ai and Bi are the Airy functions (§9.2), and

33.12.4 A1 = 1

5
x2, A2 = 1

35
(2x3 + 6), A3 = 1

15750
(21x7 + 370x4 + 580x),

33.12.5 B1 = � 1

5
x, B2 = 1

350
(7x5 � 30x2), B3 = 1

15750
(264x6 � 290x3 � 560).

In particular,

33.12.6
F0(⌘, 2⌘)

3� 1/2 G0(⌘, 2⌘)
⇠

�
�

1

3

�
!1/2

2
p
⇡

 
1⌥ 2

35
�
�

2

3

�

�
�

1

3

� 1
!4
� 8

2025
1
!6
⌥ 5792

46 06875
�
�

2

3

�

�
�

1

3

� 1
!10

� · · ·
!

,

33.12.7
F 0

0
(⌘, 2⌘)

3� 1/2 G0
0
(⌘, 2⌘)

⇠
�
�

2

3

�

2
p
⇡!1/2

 
±1 +

1
15

�
�

1

3

�

�
�

2

3

� 1
!2

± 2
14175

1
!6

+
1436

23 38875
�
�

1

3

�

�
�

2

3

� 1
!8

± · · ·
!

,

where ! = ( 2

3
⌘)1/3.

For derivations and additional terms in the expan-
sions in this subsection see Abramowitz and Rabinowitz
(1954) and Fröberg (1955).

33.12(ii) Uniform Expansions

With the substitution ⇢ = 2⌘z, Equation (33.2.1) be-
comes

33.12.8
d2w

dz2
=
✓

4⌘2

✓
1� z

z

◆
+
`(`+ 1)

z2

◆
w.

Then, by application of the results given in §§2.8(iii)
and 2.8(iv), two sets of asymptotic expansions can be
constructed for F`(⌘, ⇢) and G`(⌘, ⇢) when ⌘ !1.

The first set is in terms of Airy functions and the ex-
pansions are uniform for fixed ` and �  z < 1, where
� is an arbitrary small positive constant. They would
include the results of §33.12(i) as a special case.

The second set is in terms of Bessel functions of or-
ders 2`+ 1 and 2`+ 2, and they are uniform for fixed `
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and 0  z  1 � �, where � again denotes an arbitrary
small positive constant.

Compare also §33.20(iv).

33.13 Complex Variable and Parameters

The functions F`(⌘, ⇢), G`(⌘, ⇢), and H±
` (⌘, ⇢) may

be extended to noninteger values of ` by generalizing
(2` + 1)! = �(2`+ 2), and supplementing (33.6.5) by a
formula derived from (33.2.8) with U(a, b, z) expanded
via (13.2.42).

These functions may also be continued analytically
to complex values of ⇢, ⌘, and `. The quantities C`(⌘),
�`(⌘), and R`, given by (33.2.6), (33.2.10), and (33.4.1),
respectively, must be defined consistently so that
33.13.1

C`(⌘) = 2`ei �`(⌘)�(⇡⌘/2) �(`+ 1� i⌘)/ �(2`+ 2),
and

33.13.2 R` = (2`+ 1) C`(⌘)/ C`�1(⌘).
For further information see Dzieciol et al. (1999),

Thompson and Barnett (1986), and Humblet (1984).

Variables r, ✏

33.14 Definitions and Basic Properties

33.14(i) Coulomb Wave Equation

Another parametrization of (33.2.1) is given by

33.14.1
d2w

dr2
+
✓
✏+

2
r
� `(`+ 1)

r2

◆
w = 0,

where

33.14.2 r = �⌘⇢, ✏ = 1/⌘2.

Again, there is a regular singularity at r = 0 with
indices `+1 and �`, and an irregular singularity of rank
1 at r =1. When ✏ > 0 the outer turning point is given
by
33.14.3 rtp(✏, `) =

⇣p
1 + ✏`(`+ 1)� 1

⌘ .
✏;

compare (33.2.2).

33.14(ii) Regular Solution f(✏, `; r)

The function f(✏, `; r) is recessive (§2.7(iii)) at r = 0,
and is defined by

33.14.4 f(✏, `; r) = `+1 M,`+ 1
2
(2r/)/(2`+ 1)!,

or equivalently
33.14.5
f(✏, `; r)

= (2r)`+1e�r/ M(`+ 1� , 2`+ 2, 2r/)/(2`+ 1)!,

where M,µ(z) and M(a, b, z) are defined in §§13.14(i)
and 13.2(i), and

33.14.6  =

8
><

>:

(�✏)�1/2, ✏ < 0, r > 0,

�(�✏)�1/2, ✏ < 0, r < 0,

±i✏�1/2, ✏ > 0.

The choice of sign in the last line of (33.14.6) is imma-
terial: the same function f(✏, `; r) is obtained. This is a
consequence of Kummer’s transformation (§13.2(vii)).

f(✏, `; r) is real and an analytic function of r in the
interval �1 < r < 1, and it is also an analytic func-
tion of ✏ when �1 < ✏ <1. This includes ✏ = 0, hence
f(✏, `; r) can be expanded in a convergent power series
in ✏ in a neighborhood of ✏ = 0 (§33.20(ii)).

33.14(iii) Irregular Solution h(✏, `; r)

For nonzero values of ✏ and r the function h(✏, `; r) is
defined by
33.14.7

h(✏, `; r) =
�(`+ 1� )

⇡`

✓
W,`+ 1

2
(2r/)

+(�1)`S(✏, r)
�(`+ 1 + )
2(2`+ 1)!

M,`+ 1
2
(2r/)

◆
,

where  is given by (33.14.6) and

33.14.8 S(✏, r) =

8
>>><

>>>:

2 cos
�
⇡|✏|�1/2

�
, ✏ < 0, r > 0,

0, ✏ < 0, r < 0,

e⇡✏�1/2
, ✏ > 0, r > 0,

e�⇡✏�1/2
, ✏ > 0, r < 0.

(Again, the choice of the ambiguous sign in the last line
of (33.14.6) is immaterial.)

h(✏, `; r) is real and an analytic function of each of r
and ✏ in the intervals �1 < r < 1 and �1 < ✏ < 1,
except when r = 0 or ✏ = 0.

33.14(iv) Solutions s(✏, `; r) and c(✏, `; r)

The functions s(✏, `; r) and c(✏, `; r) are defined by

33.14.9
s(✏, `; r) = (B(✏, `)/2)1/2 f(✏, `; r),
c(✏, `; r) = (2B(✏, `))�1/2 h(✏, `; r),

provided that ` < (�✏)�1/2 when ✏ < 0, where
33.14.10

B(✏, `) =

(
A(✏, `)

�
1� exp

�
�2⇡/✏1/2

���1

, ✏ > 0,

A(✏, `), ✏  0,

and

33.14.11 A(✏, `) =
Ỳ

k=0

(1 + ✏k2).

An alternative formula for A(✏, `) is

33.14.12 A(✏, `) =
�(1 + `+ )

�(� `) �2`�1,
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the choice of sign in the last line of (33.14.6) again being
immaterial.

When ✏ < 0 and ` > (�✏)�1/2 the quantity A(✏, `)
may be negative, causing s(✏, `; r) and c(✏, `; r) to be-
come imaginary.

The function s(✏, `; r) has the following properties:

33.14.13

Z 1

0

s(✏1, `; r) s(✏2, `; r) dr = �(✏1 � ✏2),

where the right-hand side is the Dirac delta (§1.17).
When ✏ = �1/n2, n = ` + 1, ` + 2, . . . , s(✏, `; r) is
exp(�r/n) times a polynomial in r, and

33.14.14 �n,`(r) = (�1)`+1+n(2/n3)1/2 s
�
�1/n2, `; r

�

satisfies
33.14.15

Z 1

0

�2

n,`(r) dr = 1.

33.14(v) Wronskians

With arguments ✏, `, r suppressed,
33.14.16 W {h, f} = 2/⇡, W {c, s} = 1/⇡.

33.15 Graphics

33.15(i) Line Graphs of the Coulomb Functions
f(✏, `; r) and h(✏, `; r)

Figure 33.15.1: f(✏, `; r), h(✏, `; r) with ` = 0, ✏ = 4.

Figure 33.15.2: f(✏, `; r), h(✏, `; r) with ` = 1, ✏ = 4. Figure 33.15.3: f(✏, `; r), h(✏, `; r) with ` = 0, ✏ =
�1/⌫2, ⌫ = 1.5.

Figure 33.15.4: f(✏, `; r), h(✏, `; r) with ` = 0, ✏ =
�1/⌫2, ⌫ = 2.

Figure 33.15.5: f(✏, `; r), h(✏, `; r) with ` = 0, ✏ =
�1/⌫2, ⌫ = 2.5.
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33.15(ii) Surfaces of the Coulomb Functions f(✏, `; r), h(✏, `; r), s(✏, `; r), and c(✏, `; r)

Figure 33.15.6: f(✏, `; r) with ` = 0,�2 < ✏ < 2,�15 <
r < 15.

Figure 33.15.7: h(✏, `; r) with ` = 0,�2 < ✏ < 2,�15 <
r < 15.

Figure 33.15.8: f(✏, `; r) with ` = 1,�2 < ✏ < 2,�15 <
r < 15.

Figure 33.15.9: h(✏, `; r) with ` = 1,�2 < ✏ < 2,�15 <
r < 15.

Figure 33.15.10: s(✏, `; r) with ` = 0,�0.15 < ✏ <
0.10, 0 < r < 65.

Figure 33.15.11: c(✏, `; r) with ` = 0,�0.15 < ✏ <
0.10, 0 < r < 65.
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33.16 Connection Formulas

33.16(i) F` and G` in Terms of f and h

33.16.1 F`(⌘, ⇢) =
(2`+ 1)! C`(⌘)

(�2⌘)`+1
f
�
1/⌘2, `;�⌘⇢

�
,

33.16.2 G`(⌘, ⇢) =
⇡(�2⌘)`

(2`+ 1)! C`(⌘)
h
�
1/⌘2, `;�⌘⇢

�
,

where C`(⌘) is given by (33.2.5) or (33.2.6).

33.16(ii) f and h in Terms of F` and G` when
✏ > 0

When ✏ > 0 denote

33.16.3 ⌧ = ✏1/2(> 0),
and again define A(✏, `) by (33.14.11) or (33.14.12).
Then for r > 0

33.16.4 f(✏, `; r) =
✓

2
⇡⌧

1� e�2⇡/⌧

A(✏, `)

◆1/2
F`(�1/⌧, ⌧r),

33.16.5 h(✏, `; r) =
✓

2
⇡⌧

A(✏, `)
1� e�2⇡/⌧

◆1/2

G`(�1/⌧, ⌧r).

Alternatively, for r < 0
33.16.6

f(✏, `; r) = (�1)`+1

✓
2
⇡⌧

e2⇡/⌧ � 1
A(✏, `)

◆1/2
F`(1/⌧,�⌧r),

33.16.7

h(✏, `; r) = (�1)`

✓
2
⇡⌧

A(✏, `)
e2⇡/⌧ � 1

◆1/2

G`(1/⌧,�⌧r).

33.16(iii) f and h in Terms of W,µ(z) when
✏ < 0

When ✏ < 0 denote

33.16.8 ⌫ = 1/(�✏)1/2(> 0),

33.16.9

⇣`(⌫, r) = W⌫,`+ 1
2
(2r/⌫),

⇠`(⌫, r) = <
⇣
ei⇡⌫ W�⌫,`+ 1

2

�
ei⇡2r/⌫

�⌘
,

and again define A(✏, `) by (33.14.11) or (33.14.12).
Then for r > 0

33.16.10

f(✏, `; r) = (�1)`⌫`+1

✓
�cos(⇡⌫)⇣`(⌫, r)

�(`+ 1 + ⌫)

+
sin(⇡⌫) �(⌫ � `)⇠`(⌫, r)

⇡

◆
,

33.16.11

h(✏, `; r) = (�1)`⌫`+1A(✏, `)
✓

sin(⇡⌫)⇣`(⌫, r)
�(`+ 1 + ⌫)

+
cos(⇡⌫) �(⌫ � `)⇠`(⌫, r)

⇡

◆
.

Alternatively, for r < 0
33.16.12

f(✏, `; r) =
(�1)`⌫`+1

⇡

✓
� ⇡⇠`(�⌫, r)

�(`+ 1 + ⌫)

+ sin(⇡⌫) cos(⇡⌫) �(⌫ � `)⇣`(�⌫, r)
◆

,

33.16.13

h(✏, `; r) = (�1)`⌫`+1A(✏, `) �(⌫ � `)⇣`(�⌫, r)/⇡.

33.16(iv) s and c in Terms of F` and G` when
✏ > 0

When ✏ > 0, again denote ⌧ by (33.16.3). Then for
r > 0

33.16.14
s(✏, `; r) = (⇡⌧)�1/2 F`(�1/⌧, ⌧r),
c(✏, `; r) = (⇡⌧)�1/2 G`(�1/⌧, ⌧r).

Alternatively, for r < 0

33.16.15
s(✏, `; r) = (⇡⌧)�1/2 F`(1/⌧,�⌧r),
c(✏, `; r) = (⇡⌧)�1/2 G`(1/⌧,�⌧r).

33.16(v) s and c in Terms of W,µ(z) when
✏ < 0

When ✏ < 0 denote ⌫, ⇣`(⌫, r), and ⇠`(⌫, r) by (33.16.8)
and (33.16.9). Also denote

33.16.16 K(⌫, `) =
�
⌫2 �(⌫ + `+ 1) �(⌫ � `)

��1/2

.

Then for r > 0

33.16.17

s(✏, `; r) =
(�1)`

2⌫1/2

✓
sin(⇡⌫)
⇡K(⌫, `)

⇠`(⌫, r)

� cos(⇡⌫)⌫2K(⌫, `)⇣`(⌫, r)
◆

,

c(✏, `; r) =
(�1)`

2⌫1/2

✓
cos(⇡⌫)
⇡K(⌫, `)

⇠`(⌫, r)

+ sin(⇡⌫)⌫2K(⌫, `)⇣`(⌫, r)
◆

.

Alternatively, for r < 0
33.16.18

s(✏, `; r) =
(�1)`+1

21/2

✓
⌫3/2

K(⌫, `)
⇠`(�⌫, r)

� sin(⇡⌫) cos(⇡⌫)
⇡⌫1/2

K(⌫, `)⇣`(�⌫, r)
◆

,

c(✏, `; r) =
(�1)`

⇡(2⌫)1/2
K(⌫, `)⇣`(�⌫, r).
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33.17 Recurrence Relations and Derivatives

33.17.1 (`+ 1)r f(✏, `� 1; r)� (2`+ 1) (`(`+ 1)� r) f(✏, `; r) + `
�
1 + (`+ 1)2✏

�
r f(✏, `+ 1; r) = 0,

33.17.2 (`+ 1)
�
1 + `2✏

�
r h(✏, `� 1; r)� (2`+ 1) (`(`+ 1)� r) h(✏, `; r) + `r h(✏, `+ 1; r) = 0,

33.17.3 (`+ 1)r f 0(✏, `; r) =
�
(`+ 1)2 � r

�
f(✏, `; r)�

�
1 + (`+ 1)2✏

�
r f(✏, `+ 1; r),

33.17.4 (`+ 1)r h0(✏, `; r) =
�
(`+ 1)2 � r

�
h(✏, `; r)� r h(✏, `+ 1; r).

33.18 Limiting Forms for Large `

As `!1 with ✏ and r (6= 0) fixed,

33.18.1 f(✏, `; r) ⇠ (2r)`+1

(2`+ 1)!
, h(✏, `; r) ⇠ (2`)!

⇡(2r)`
.

33.19 Power-Series Expansions in r

33.19.1 f(✏, `; r) = r`+1

1X

k=0

↵krk,

where
33.19.2

↵0 = 2`+1/(2`+ 1)!, ↵1 = �↵0/(`+ 1),
k(k + 2`+ 1)↵k + 2↵k�1 + ✏↵k�2 = 0, k = 2, 3, . . . .

33.19.3

2⇡ h(✏, `; r) =
2X̀

k=0

(2`� k)!�k

k!
(2r)k�` �

1X

k=0

�krk+`+1

�A(✏, `) (2 ln |2r/| + < (`+ 1 + )
+ < (�`+ )) f(✏, `; r), r 6= 0.

Here  is defined by (33.14.6), A(✏, `) is defined by
(33.14.11) or (33.14.12), �0 = 1, �1 = 1, and
33.19.4

�k��k�1 + 1

4
(k� 1)(k� 2`� 2)✏�k�2 = 0, k = 2, 3, . . . .

Also,

33.19.5
�0 = (�2`+1 � 2( (2`+ 2) +  (1))A(✏, `))↵0,

�1 = (�2`+2 � 2( (2`+ 3) +  (2))A(✏, `))↵1,

33.19.6
k(k + 2`+ 1)�k + 2�k�1 + ✏�k�2

+ 2(2k + 2`+ 1)A(✏, `)↵k = 0, k = 2, 3, . . . ,

with �0 = �1 = 0, and

33.19.7

�k � �k�1

+ 1

4
(k�1)(k�2`�2)✏�k�2+ 1

2
(k�1)✏�k�2 = 0,

k = 2, 3, . . . .

The expansions (33.19.1) and (33.19.3) converge for all
finite values of r, except r = 0 in the case of (33.19.3).

33.20 Expansions for Small |✏|

33.20(i) Case ✏ = 0

33.20.1
f(0, `; r) = (2r)1/2 J2`+1

⇣p
8r
⌘
,

h(0, `; r) = �(2r)1/2 Y2`+1

⇣p
8r
⌘
, r > 0,

33.20.2

f(0, `; r) = (�1)`+1(2|r|)1/2 I2`+1

⇣p
8|r|
⌘
,

h(0, `; r) = (�1)`(2/⇡)(2|r|)1/2 K2`+1

⇣p
8|r|
⌘
,

r < 0.

For the functions J, Y, I, and K see §§10.2(ii), 10.25(ii).

33.20(ii) Power-Series in ✏ for the Regular
Solution

33.20.3 f(✏, `; r) =
1X

k=0

✏kFk(`; r),

where

33.20.4

Fk(`; r) =
3kX

p=2k

(2r)(p+1)/2Ck,p J2`+1+p

⇣p
8r
⌘
, r > 0,

33.20.5

Fk(`; r)

=
3kX

p=2k

(�1)`+1+p(2|r|)(p+1)/2Ck,p I2`+1+p

⇣p
8|r|
⌘
,

r < 0.

The functions J and I are as in §§10.2(ii), 10.25(ii), and
the coe�cients Ck,p are given by C0,0 = 1, C1,0 = 0,
and

33.20.6

Ck,p = 0, p < 2k or p > 3k,
Ck,p = (�(2`+ p)Ck�1,p�2 + Ck�1,p�3) /(4p),

k > 0, 2k  p  3k.

The series (33.20.3) converges for all r and ✏.
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33.20(iii) Asymptotic Expansion for the
Irregular Solution

As ✏! 0 with ` and r fixed,

33.20.7 h(✏, `; r) ⇠ �A(✏, `)
1X

k=0

✏kHk(`; r),

where A(✏, `) is given by (33.14.11), (33.14.12), and
33.20.8

Hk(`; r) =
3kX

p=2k

(2r)(p+1)/2Ck,p Y2`+1+p

⇣p
8r
⌘
, r > 0,

33.20.9
Hk(`; r)

= (�1)`+1
2
⇡

3kX

p=2k

(2|r|)(p+1)/2Ck,p K2`+1+p

⇣p
8|r|
⌘
,

r < 0.
The functions Y and K are as in §§10.2(ii), 10.25(ii),
and the coe�cients Ck,p are given by (33.20.6).

33.20(iv) Uniform Asymptotic Expansions

For a comprehensive collection of asymptotic expansions
that cover f(✏, `; r) and h(✏, `; r) as ✏ ! 0± and are
uniform in r, including unbounded values, see Curtis
(1964a, §7). These expansions are in terms of elemen-
tary functions, Airy functions, and Bessel functions of
orders 2`+ 1 and 2`+ 2.

33.21 Asymptotic Approximations for Large
|r|

33.21(i) Limiting Forms

We indicate here how to obtain the limiting forms of
f(✏, `; r), h(✏, `; r), s(✏, `; r), and c(✏, `; r) as r ! ±1,
with ✏ and ` fixed, in the following cases:

(a) When r ! ±1 with ✏ > 0, Equations (33.16.4)–
(33.16.7) are combined with (33.10.1).

(b) When r ! ±1 with ✏ < 0, Equations
(33.16.10)–(33.16.13) are combined with

33.21.1
⇣`(⌫, r) ⇠ e�r/⌫(2r/⌫)⌫ ,

⇠`(⌫, r) ⇠ er/⌫(2r/⌫)�⌫ , r !1,

33.21.2
⇣`(�⌫, r) ⇠ er/⌫(�2r/⌫)�⌫ ,

⇠`(�⌫, r) ⇠ e�r/⌫(�2r/⌫)⌫ , r ! �1.
Corresponding approximations for s(✏, `; r) and c(✏, `; r)
as r ! 1 can be obtained via (33.16.17), and as
r ! �1 via (33.16.18).

(c) When r ! ±1 with ✏ = 0, combine (33.20.1),
(33.20.2) with §§10.7(ii), 10.30(ii).

33.21(ii) Asymptotic Expansions

For asymptotic expansions of f(✏, `; r) and h(✏, `; r) as
r ! ±1 with ✏ and ` fixed, see Curtis (1964a, §6).

Physical Applications

33.22 Particle Scattering and Atomic and
Molecular Spectra

33.22(i) Schrödinger Equation

With e denoting here the elementary charge, the
Coulomb potential between two point particles with
charges Z1e, Z2e and masses m1, m2 separated by a
distance s is V (s) = Z1Z2e2/(4⇡✏0s) = Z1Z2↵h̄c/s,
where Zj are atomic numbers, ✏0 is the electric con-
stant, ↵ is the fine structure constant, and h̄ is the re-
duced Planck’s constant. The reduced mass is m =
m1m2/(m1 + m2), and at energy of relative motion
E with relative orbital angular momentum `h̄, the
Schrödinger equation for the radial wave function w(s)
is given by
33.22.1✓

� h̄2

2m

✓
d2

ds2
� `(`+ 1)

s2

◆
+

Z1Z2↵h̄c

s

◆
w = Ew,

With the substitutions

33.22.2 k = (2mE/h̄2)1/2, Z = mZ1Z2↵c/h̄, x = s,

(33.22.1) becomes

33.22.3
d2w

dx2
+
✓

k2 � 2Z

x
� `(`+ 1)

x2

◆
w = 0.

33.22(ii) Definitions of Variables

k Scaling

The k-scaled variables ⇢ and ⌘ of §33.2 are given by

33.22.4 ⇢ = s(2mE/h̄2)1/2, ⌘ = Z1Z2↵c(m/(2E))1/2.

At positive energies E > 0, ⇢ � 0, and:

Attractive potentials: Z1Z2 < 0, ⌘ < 0.
Zero potential (V = 0): Z1Z2 = 0, ⌘ = 0.
Repulsive potentials: Z1Z2 > 0, ⌘ > 0.

Positive-energy functions correspond to processes
such as Rutherford scattering and Coulomb exci-
tation of nuclei (Alder et al. (1956)), and atomic
photo-ionization and electron-ion collisions (Bethe and
Salpeter (1977)).

At negative energies E < 0 and both ⇢ and ⌘ are
purely imaginary. The negative-energy functions are
widely used in the description of atomic and molecular
spectra; see Bethe and Salpeter (1977), Seaton (1983),
and Aymar et al. (1996). In these applications, the Z-
scaled variables r and ✏ are more convenient.
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Z Scaling

The Z-scaled variables r and ✏ of §33.14 are given by

33.22.5 r = �Z1Z2(mc↵/h̄)s, ✏ = E/(Z2

1
Z2

2
mc2↵2/2).

For Z1Z2 = �1 and m = me, the electron mass,
the scaling factors in (33.22.5) reduce to the Bohr ra-
dius, a0 = h̄/(mec↵), and to a multiple of the Rydberg
constant,

R1 = mec↵2/(2h̄).

Attractive potentials: Z1Z2 < 0, r > 0.
Zero potential (V = 0): Z1Z2 = 0, r = 0.
Repulsive potentials: Z1Z2 > 0, r < 0.

ik Scaling

The ik-scaled variables z and  of §13.2 are given by
33.22.6

z = 2is(2mE/h̄2)1/2,  = iZ1Z2↵c(m/(2E))1/2.

Attractive potentials: Z1Z2 < 0, = < 0.
Zero potential (V = 0): Z1Z2 = 0,  = 0.
Repulsive potentials: Z1Z2 > 0, = > 0.

Customary variables are (✏, r) in atomic physics and
(⌘, ⇢) in atomic and nuclear physics. Both variable sets
may be used for attractive and repulsive potentials: the
(✏, r) set cannot be used for a zero potential because this
would imply r = 0 for all s, and the (⌘, ⇢) set cannot be
used for zero energy E because this would imply ⇢ = 0
always.

33.22(iii) Conversions Between Variables

33.22.7 r = �⌘⇢, ✏ = 1/⌘2, Z from k.

33.22.8 z = 2i⇢,  = i⌘, ik from k.

33.22.9 ⇢ = z/(2i), ⌘ = /i, k from ik.

33.22.10 r = z/2, ✏ = �1/2, Z from ik.

33.22.11 ⌘ = ±✏�1/2, ⇢ = �r/⌘, k from Z.

33.22.12  = ±(�✏)�1/2, z = 2r/, ik from Z.
Resolution of the ambiguous signs in (33.22.11),
(33.22.12) depends on the sign of Z/k in (33.22.3). See
also §§33.14(ii), 33.14(iii), 33.22(i), and 33.22(ii).

33.22(iv) Klein–Gordon and Dirac Equations

The relativistic motion of spinless particles in a
Coulomb field, as encountered in pionic atoms and pion-
nucleon scattering (Backenstoss (1970)) is described by
a Klein–Gordon equation equivalent to (33.2.1); see
Barnett (1981a). The motion of a relativistic electron in
a Coulomb field, which arises in the theory of the elec-
tronic structure of heavy elements (Johnson (2007)), is
described by a Dirac equation. The solutions to this
equation are closely related to the Coulomb functions;
see Greiner et al. (1985).

33.22(v) Asymptotic Solutions

The Coulomb solutions of the Schrödinger and Klein–
Gordon equations are almost always used in the external
region, outside the range of any non-Coulomb forces or
couplings.

For scattering problems, the interior solution is
then matched to a linear combination of a pair of
Coulomb functions, F`(⌘, ⇢) and G`(⌘, ⇢), or f(✏, `; r)
and h(✏, `; r), to determine the scattering S-matrix and
also the correct normalization of the interior wave solu-
tions; see Bloch et al. (1951).

For bound-state problems only the exponentially de-
caying solution is required, usually taken to be the
Whittaker function W�⌘,`+ 1

2
(2⇢). The functions �n,`(r)

defined by (33.14.14) are the hydrogenic bound states
in attractive Coulomb potentials; their polynomial com-
ponents are often called associated Laguerre functions;
see Christy and Duck (1961) and Bethe and Salpeter
(1977).

33.22(vi) Solutions Inside the Turning Point

The penetrability of repulsive Coulomb potential bar-
riers is normally expressed in terms of the quantity
⇢/(F 2

` (⌘, ⇢)+G2

`(⌘, ⇢)) (Mott and Massey (1956, pp. 63–
65)). The WKBJ approximations of §33.23(vii) may
also be used to estimate the penetrability.

33.22(vii) Complex Variables and Parameters

The Coulomb functions given in this chapter are most
commonly evaluated for real values of ⇢, r, ⌘, ✏ and
nonnegative integer values of `, but they may be con-
tinued analytically to complex arguments and order `
as indicated in §33.13.

Examples of applications to noninteger and/or com-
plex variables are as follows.

• Scattering at complex energies. See for example
McDonald and Nuttall (1969).

• Searches for resonances as poles of the S-matrix in
the complex half-plane =k < 0. See for example
Csótó and Hale (1997).

• Regge poles at complex values of `. See for exam-
ple Takemasa et al. (1979).

• Eigenstates using complex-rotated coordinates
r ! rei✓, so that resonances have square-
integrable eigenfunctions. See for example Halley
et al. (1993).

• Solution of relativistic Coulomb equations. See for
example Cooper et al. (1979) and Barnett (1981b).
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• Gravitational radiation. See for example Berti
and Cardoso (2006).

For further examples see Humblet (1984).

Computation

33.23 Methods of Computation

33.23(i) Methods for the Confluent
Hypergeometric Functions

The methods used for computing the Coulomb functions
described below are similar to those in §13.29.

33.23(ii) Series Solutions

The power-series expansions of §§33.6 and 33.19 con-
verge for all finite values of the radii ⇢ and r, respec-
tively, and may be used to compute the regular and
irregular solutions. Cancellation errors increase with
increases in ⇢ and |r|, and may be estimated by com-
paring the final sum of the series with the largest par-
tial sum. Use of extended-precision arithmetic increases
the radial range that yields accurate results, but even-
tually other methods must be employed, for example,
the asymptotic expansions of §§33.11 and 33.21.

33.23(iii) Integration of Defining Di↵erential
Equations

When numerical values of the Coulomb functions are
available for some radii, their values for other radii may
be obtained by direct numerical integration of equations
(33.2.1) or (33.14.1), provided that the integration is
carried out in a stable direction (§3.7). Thus the reg-
ular solutions can be computed from the power-series
expansions (§§33.6, 33.19) for small values of the radii
and then integrated in the direction of increasing val-
ues of the radii. On the other hand, the irregular solu-
tions of §§33.2(iii) and 33.14(iii) need to be integrated
in the direction of decreasing radii beginning, for exam-
ple, with values obtained from asymptotic expansions
(§§33.11 and 33.21).

33.23(iv) Recurrence Relations

In a similar manner to §33.23(iii) the recurrence rela-
tions of §§33.4 or 33.17 can be used for a range of values
of the integer `, provided that the recurrence is carried
out in a stable direction (§3.6). This implies decreas-
ing ` for the regular solutions and increasing ` for the
irregular solutions of §§33.2(iii) and 33.14(iii).

33.23(v) Continued Fractions

§33.8 supplies continued fractions for F 0` / F` and
H±

`
0
/ H±

` . Combined with the Wronskians (33.2.12),
the values of F`, G`, and their derivatives can be ex-
tracted. Inside the turning points, that is, when ⇢ <
⇢tp(⌘, `), there can be a loss of precision by a factor of
approximately |G` |2.

33.23(vi) Other Numerical Methods

Curtis (1964a, §10) describes the use of series, radial
integration, and other methods to generate the tables
listed in §33.24.

Bardin et al. (1972) describes ten di↵erent methods
for the calculation of F` and G`, valid in di↵erent re-
gions of the (⌘, ⇢)-plane.

Thompson and Barnett (1985, 1986) and Thompson
(2004) use combinations of series, continued fractions,
and Padé-accelerated asymptotic expansions (§3.11(iv))
for the analytic continuations of Coulomb functions.

Noble (2004) obtains double-precision accuracy for
W�⌘,µ(2⇢) for a wide range of parameters using a com-
bination of recurrence techniques, power-series expan-
sions, and numerical quadrature; compare (33.2.7).

33.23(vii) WKBJ Approximations

WKBJ approximations (§2.7(iii)) for ⇢ > ⇢tp(⌘, `) are
presented in Hull and Breit (1959) and Seaton and
Peach (1962: in Eq. (12) (⇢�c)/c should be (⇢�c)/⇢). A
set of consistent second-order WKBJ formulas is given
by Burgess (1963: in Eq. (16) 32+2 should be 32c+2).
Seaton (1984) estimates the accuracies of these approx-
imations.

Hull and Breit (1959) and Barnett (1981b) give
WKBJ approximations for F0 and G0 in the region in-
side the turning point: ⇢ < ⇢tp(⌘, `).

33.24 Tables

• Abramowitz and Stegun (1964, Chapter 14) tab-
ulates F0(⌘, ⇢), G0(⌘, ⇢), F 0

0
(⌘, ⇢), and G0

0
(⌘, ⇢)

for ⌘ = 0.5(.5)20 and ⇢ = 1(1)20, 5S; C0(⌘) for
⌘ = 0(.05)3, 6S.

• Curtis (1964a) tabulates P`(✏, r), Q`(✏, r) (§33.1),
and related functions for ` = 0, 1, 2 and ✏ =
�2(.2)2, with x = 0(.1)4 for ✏ < 0 and x = 0(.1)10
for ✏ � 0; 6D.

For earlier tables see Hull and Breit (1959) and
Fletcher et al. (1962, §22.59).



756 Coulomb Functions

33.25 Approximations

Cody and Hillstrom (1970) provides rational approxi-
mations of the phase shift �0(⌘) = ph�(1 + i⌘) (see
(33.2.10)) for the ranges 0  ⌘  2, 2  ⌘  4, and
4  ⌘  1. Maximum relative errors range from
1.09⇥10�20 to 4.24⇥10�19.

33.26 Software

See http://dlmf.nist.gov/33.26.
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