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PROGRAM SUMMARY

Title of program: COULCC: Complex Coulomb & Bessel
Functions

Catalogue number: ACDP

Program obtainable from: CPC Program Library, Queen’s Uni-
versity of Belfast, N. Ireland (see application form in this issue)

Computer: Installation:

AS /7000 Daresbury SERC
CRAY-1 ULCC

CDC 7600 UMRCC

Operating system: OS/MVT with VS FORTRAN
Programming language used: Fortran 77

High-speed storage required: 822 Kb for compilation; 202 Kb
for execution

No. of bits in a word: 32 (4 bytes of 8 bits)
Peripherals used: card reader or VDU, printer
No. of lines in combined program and test deck: 1658

Keywords: Coulomb, Bessel, Whittaker, hypergeometric, con-
tinued fraction, scattering, closed channels, off-shell, reso-
nances, reactions, Regge poles

Nature of the physical problem

The routine COULCC calculates both the oscillating and the
exponentially varying Coulomb wave functions, and their radial
derivatives, for complex n(Sommerfeld parameter), complex
energies and complex angular momenta. The functions for

uncharged scattering (spherical Bessels) and cylindrical Bessel
functions are special cases which are more easily solved. Two
linearly independent solutions are found, in general, to the
differential equation f”(x)+ g(x)f(x)=0, where g(x) has
x% x~1 and x~? terms, with coefficients 1, —27n and — A(A
+ 1), respectively.

Method of solution

The continued fractions of Steed [1,2] are supplemented, if
necessary, by a | F] series expansion or by Padé accelerations of
a , F, asymptotic expansion. Recurrence relations are used for
integer steps in A in a stable manner. It should be noted that
the routine will solve for a single arbitrary A without recur-
rence, if required. For small x a previous restriction on accu-
racy has been removed by adding a subroutine to evaluate the
irregular solution (singular at x = 0) by a suitable combination
of series.

Restrictions of the complexity of the problem

On the Coulomb bound-state poles the functions are singular
(from their boundary conditions). The program returns the
residue polynomial but only one solution exists, and it is found.

Typical running time

A direct comparison of COULCC and its predecessor for real
arguments shows an increase by a factor of 2 for the new code.
The test deck (comprising 36 test values and excluding the error
condition) took 1.14 s for execution on the NAS 7000 and 2.2 s
on the CDC 7600.
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LONG WRITE-UP

1. Introduction

This program, COULCC, is the complex gener-
alisation of a continued-fraction algorithm for
calculating real Coulomb wave functions which
has been described and evaluated in a series of
papers [1-7]. It is designed to find linearly inde-
pendent solutions F, G, H" and H~ of the equa-
tion

2
d_f+ 1—H—M)f(x)=0

dx? x x?2
subject to the boundary conditions
FA(T” x) = O’
G)\(T,, 0) = H:(Tl, O) = H/\-(Tls 0) = +o0
and
Fy(n,x) — sin6,, G,(n, x) > cosé,,
X —* 00 X—> 00
HiE(ny, x) - etifr
where 6, = x — 91ln(2x) — 3Am + o, and o, is the
Coulomb phase shift
1 +x+in) |'?
I'(1+A—in) '

ioy

For positive-energy scattering problems, x is
real and positive, 7 and A are real, and the real F
and G functions resulting can already be calcu-
lated to adequate precision, typically 10~12 [1-3].
When looking for example for off-shell structures
such as resonance poles, x and n have small
imaginary parts, so F and G are now complex in
general. Tamura and Rybicki [9] have considered
this case, and it is straightforward to extend
COULFG [7] by complex continuation to treat
off-shell regions near the physical axis. Another
common analytic continuation is to complex angu-
lar momentum A, to trace Regge poles, etc., as
have been calculated by Takemasa et al. [10].

Negative energy solutions (i.e. x and 5 imagin-
ary) are also required when seeking bound states,
or when closed channels arise in multichannel
scattering problems. Traditionally just the decay-
ing Whittaker function is found, for Im(n) > 0 by

Bell and Scott [11] and for Im(n) < 0 by Hebbard
and Robson [12].

Solutions near zero energy are usually found,
on the other hand, by ‘Z-scaled coordinates’ r =
—nx and ¢ =1/9 so that they can be calculated,
e.g. by Seaton [8] or Curtis [13], continuously
across the energy threshold. The resulting wave
functions are not dimensionless as are F, G, etc.,
and Humblet [14] has proposed similar wave func-
tions for general scattering problems. We have
chosen instead to continue calculating the stan-
dard Coulomb wave functions, but supplementing
Steed’s .method [1] by a series expansion for the
regular function near threshold. We also supple-
ment the program by a Padé-accelerated asymp-
totic expansion for the Whittaker function as in
ref. [15] and find that we are now able to include
all of the above physical cases with x,  and A
complex in general.

2. Method of calculation

The general formulae for defining the Coulomb
functions Fy(7n, x) and G,(7, x) for complex A, 7
and x are described in a related paper [16] by the
authors, along with a description of the different
combinations of continued fractions used in differ-
ent (x, n, A) regions.

The power of the method derives principally
from the evaluation by Steed’s method of follow-
ing continued fractions

CF1: f=£=S>\+1— R Lses! ,
Fy Tis1— Ther— -

where

S>\=§+%’ T\= 5+ Sy

and

Ri=1+7n*/N

and

CF2“: p+iwq=Hy'/Hy

—io(t- ) s T
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(a+1)(b+1)
Azx—n+2iw)+...~

where a=iwn— A and b=iwy+A+ 1, with the
coefficients given analytically as indicated and w
=+lorw=—1

Steed’s algorithm, derived in ref. [1], is a for-
ward recurrence method for evaluating a con-
tinued fraction of the form

a, 4 an

=0 b+ b+ b+ ...
by carrying forward just D,, the ratio between
successive denominators B, in the equivalent poly-
nomial ratio h = A4,/B,, and thus avoiding possi-

ble overflows in evaluating 4, and B, separately.
The method is

h

hy=a,,
D,=1/b,,
Ah,=a,D,,
hy=hy+ Ah,,

for n =2 upto n,,,, do begin
Dn = 1/(Dn—\an + bn)’
Ah,=(b,D,—1)Ah,_,,

h,=h, ,+Ah,,
if [Ah,|<e|h,| then exit
end

If b,=0, then the continued fraction is refor-
mulated as
4

hea,+ 2 )p, +- 22 %4
=q —— _—
0" a,| 7 byt byt

The continued fractions CF1 and CF2 form the
heart of the method and above their sole use is
labelled as case 2 and case 3 within the program.
Case 3 is the real-parameter case and it hence
corresponds to the parent program COUFLG (7).
Case 2 is for complex parameters but for the
region where the resulting wavefunctions still re-
tain oscillatory character. The absolute normalisa-
tions are determined from the Wronskian equation
F,’G, — G'F, = 1. For this to hold all parameters
need to be close to their real axes. Other regions of
the parameters relate to the 4 other cases described
below.

These analytic continued fractions are supple-
mented in ‘case 1’ for small x by a direct evalua-
tion of a , F; series to give

Fy(m, x)=x*"1e*>Cy(n)
X F(1+X+tin; 2A +2; F2ix).

This value of F, together with f from CF1 gives
F,’. The upper or lower signs throughout are cho-
sen to given 1 + A & in the most negative real part
possible, to enable quicker and more accurate con-
vergence. The | F; series is absolutely convergent,
but to extend the maximum values of 7 and x
which are possible before large partial sums cause
large fractional errors in the result, the evaluation
is performed in extended precision. In COULCC,
REAL * 16 variables are used, writing out the real
and imaginary arithmetic separately for use on
machines such as the CRAY-1 which has no
COMPLEX # 32-type variables.

The corresponding evaluation of G, in case 1 is
still achieved with CF2; whereas for yet smaller x
the computation of CF2 becomes too inefficient
and cases 5 and 6 are used instead. In these cases
we re-expand the irregular functions in terms of
the regular solution. If 2A is non-integral (case 5),
G, is found by means of the | F, series for F_,_;,
whereas if 2\ is an integer (case 6), G, is given by
the logarithmic expansion (eq. 13.1.9 of ref. [17])
analogous to the Neumann series for Bessel func-
tions.

For large-x values (case 4) asymptotic expan-
sions based on Hy(n, x)=¢e'*" ,F(ion — A, iwy
+A+1;;w/(2ix)) are used, either directly for
H,(w), or in combination to give CF1A = F'/F =
(H*"-H)/(H"—H™).

For intermediate-x values, the above asymp-
totic expansions are accelerated by Padé tech-
niques, a process which has been found [15] to
extend inward the region of convergence to limits
set only by machine precision and exponent range.
We use the P-algorithm of ref. [18] to calculate
term-by-term the coefficients of the continued
fraction ‘corresponding’ to the original series, in
parallel with a term-by-term evaluation of this
continued fraction by Steed’s method. The Padé
acceleration is only invoked if the asymptotic ex-
pansions are not sufficiently accurate on their
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own. Since we have an alternative method for
smaller x, namely the ;F, series, we may set the
maximum length JMAX of the continued fraction
at only 50. We see from fig. 1 of ref. [16] that this
includes the region where there is a relatively
reliable correlation between the numbers of itera-
tions for CF2(“) and for H‘’ itself.

The code is set up to calculate the regular
solution F, and one of the irregular solutions G,,
HY} =G, +iF,, or Hy =G, —iF, according to a
MODE variable. In general the user should ask for
the linear combination with the smallest absolute
magnitude, as it is impossible to obtain this solu-
tion accurately from the others due to the exces-
sive cancellation. For large A, G and H* are all
large, whereas F, is small so is always returned.
For small A and x complex H™* will usually be
small for Im(x) > 0, and H™ for Im(x) <0, so the
user should choose H?* according to the corre-
sponding half-plane containing x. For small A,
and x near the axis, G and H™ are all oscillating
at about the same magnitude, so the choice of
MODE is not critical here.

The code also calculates the Coulomb phase
shifts 6,(7), and these can be returned if required.
This is strongly advised if either of 1 + A +in or
1+ A —i7 is likely to have a negative real part, as
then the cut in o,(7) is approached. On the cut all
the Coulomb functions change sign together, and
there will be a simultaneous change of = in 6,(7).
If the Whittaker functions are to be calculated for
example by

W—iwn.)\+l/2( —-2iwx)

= exp iw[%*rr()x +iwn)— o,\(n)] Hy(m, x)
with w arg x > —m/2,

then the sign of W is only determined if the o,(7)
used in this formula is that returned by the same
code which calculated the H,. A consistent treat-
ment of the cut is then maintained.

If one of 1+ A +in is zero or a negative in-
teger, then a gamma function in the expression for
0,(n) will be evaluated on its pole. These are just
the hydrogenic Coulomb bound-state poles, and
with these states e'°*, F, and H,* are all, strictly
speaking, infinite. The residues, however, are finite

polynomials, and the code uses the zero returned
by the log-gamma routine to calculate these poly-
nomials scaled to finite values. A corresponding
“0,” is returned such that the Whittaker function
calculated by the formula above is still correct,
even though the gamma routine printed an error
message.

The above two paragraphs imply that if there is
any choice of 1 + A + in approaching the negative
real axis (e.g. for Coulomb eigenstates), the user
should calculate the Whittaker function from H*
by means of the phase shifts returned at the same
time, and use the Whittaker function in subse-
quent calculations.

3. Code description

The calling sequence for the program is (see fig.
1)
CALL COULCC(X,ETA,ZLMIN NL,FC,
GC,FCP,GCP,SIG,MODE1,KFN,IFAIL)

where the arguments have the following type and
meaning.

X complex x#0,

ETA complex n,

ZLMIN complex A mins

NL integer number of A wvalues
Apins Amin F Lo,
Amin T NL =1 calcu-
lated;

FC complex array dimension NL, regular
solution, F,,

GC complex array dimension NL, irregu-
lar solution G, or H,,

FCP complex array dimension NL, regular
derivative  Fy = dF,/
dx,

GCP complex array dimension NL, irregu-
lar derivative G} or Hj,

SIG complex array dimension NL, Cou-
lomb phase shifts if
KFN = (;

MODE] integer: [MODE]| determines selection
of F, G, H*, and MODE]1 < 0 indicates that
exponential scaling is to be used.
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SUBROUTINE COULCC(XX,ETAl,ZLMIN,NL, FC,GC,FCP,GCP, SIG,
X MODE1 ,KFN, IFAIL)

[of

CCCCCCCCceceececececececeecccceceecccececceceecceecccececcececececcecceccecececceccececcceeccecceccececccccece

A. R. Barnett

original program RCWFN' in
+ RCWFF in
+ COULFG in

description of real algorithm in
description of complex algorithm
this version written up in

if /MODEl/=

12 F,H+ )

22 F,H- )

Define SCALE = ( O
( IMAG(XX)
( REAL(XX)
then FC = EXP(-ABS(SCALE))
and GC = EXP(-ABS(SCALE))
or EXP(SCALE)
or EXP(-SCALE)

if KFN
1 spherical Bessel
2 cylindrical Bessel

Precision:

acononoaoon0000QOO0OC O 0000000000000 CO0OOOOO0OOOOOOOOO0N

Manchester
modified I.J. Thompson Daresbury, Sept.

March

CPC
CPC
CPC
CPC
JCp
cpC

1981

COMPLEX COULOMB WAVEFUNCTION PROGRAM USING STEED'S METHOD

8 (1974) 377-395
11 (1976) 141-142
27 (1982) 147-166
21 (1981) 297-314
XX (1984) YYY-222Z
XX (1984) YYY-Z22

call to at

11 get F,H+,F' ,H+' ) if KFN=0O,

>0,

21 get F,H-,F',H-' ) if KFN=0O,

>0,

if MODEl1l > O
if MODE1 < O & KFN < 3
if MODE1 < O & KFN = 3
( F, j) J, or 1)
(G, y, or Y )

( H+, H(1), or K)
( H- or H(2) )

*

*
*
*

3 modified cyl. Bessel

The use of MODE and KFN is independent
(except that for KFN=3, H(1l) & H(2) are not given)

if MODE1<O then the values returned are scaled
factor (dependent only on XX) to bring nearer unity
the functions for large /XX/, small ETA & /zZL/ < /XX/

least

+
+

LOLO

COULCC returns F,G,G',G',SIG for complex XX, ETAl, and ZLMIN,
for NL integer~spaced lambda values ZLMIN to ZLMIN+NL-1 inclusive,
thus giving complex-energy solutions to the Coulomb Schrodinger
equation,to the Klein-Gordon equation and to suitable forms of
the Dirac equation ,also spherical & cylindrical Bessel equations

for integer-spaced lambda values
unused arrays must be dimensioned in

length (1)

F
Y
F
Y

-

by an

0,-1 complex Coulomb functions are returned

1983 for Complex Functions

)

= H(1) ) in

) GC

= H(2) )

exponential

With negative orders lambda, COULCC can still be used but with
reduced accuracy as CFl becomes unstable. The user is thus
strongly advised to use reflection formulae based on
H+-(2L,,) = H+-(-2L-1,,) * exp +-i(sig(2L)-sig(-2L~1)-(2L+1/2)p1i)

and where Coulomb phase shifts put in SIG if KFN=0 (not -1)

results to within 2-3 decimals of 'machine accuracy’',
but if CFlA fails because X too small or ETA too large
the F solution is less accurate if it decreases with
decreasing lambda (e.g. for lambda.LE.-1 & ETA.NE.O)

RERR in COMMON/STEED/ traces the main roundoff errors.

Ao anNocanNnnnnOnNnoOonNOnNOOnNOacOOa0aAnNO0O00OO0O0ON0000000CO00O00O000OOO0OOO0O00

367



368 1.J. Thompson, A.R. Barnett / Complex Coulomb function

IFAIL on input =0

IFAIL in output = -2 : argument out of range

s e N NsEsEsNoNeNeNeNeNe N N2 N ¢

: no printing of error messages
ne 0 : print error messages on file 6

= ~]1 : one of the continued fractions failed,
or arithmetic check before final recursion
= 0 : All Calculations satisfactory
ge 0 : results avajilable for orders up to & at
position NL-IFAIL in the output arrays.
= -3 : values at ZLMIN not found as over/underflowC
= -4 roundoff errors make results meaningless [+

COULCC is coded for real®*8 on IBM or equivalent ACCUR >= 10**-14 C
with a section of doubled REAL*16 for less roundoff errors. C
(If no doubled precision available, increase JMAX to eg 100)C
Use IMPLICIT COMPLEX*32 & REAL*16 on VS compiler ACCUR >= 10%**-32
For single precision CDC (48 bits) reassign REAL*8aREAL etc.

anoaanononooannn

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Fig. 1. Subroutine COULCC, introductory comment lines.

If [MODE]|
=1
=2
=3
= 4
=11
=12
=21
=22

™
Q

-

o
Q0

<

e

* F, H*’} ifKFN<O0,
H*=G+iF
if KFN > 0,

H*=J+iY

-

T

+

-, F,H

|

N

-

where F is in the FC array, G, H* or H™ is in the
GC array and where the definition of H * is fixed
by KFN (see below).

If MODE1 < 0, then the values retained are scaled
by an exponential factor (dependent only on x),
designed to bring nearer unity the functions for
large |x| and small X, n:

Define s =imag(x) for KFN <2 and s = real(x)
for KFN = 3,

then FC=e M{F, j, Jor I}

e "{G, yor Y} or
e'{H orK}or

e *{H}.

and GC =

KFN integer, determines kind of Coulomb or Bes-
sel functions:

KFN FC: GC:
0 complex Coulomb  F,(n, x) G,(n, x)
functions or H¥*=G+iF

1 complex spherical  j,(x) n(x)
Bessels orh*= j+iy

2 complex cylindrical J,(x) Y \(x)
Bessels or H*=J +1iY

3 modified cylindrical I,(x) K,(x)
Bessels

—1 Coulomb functions
but without using
the SIG array.

The FCP and GCP arrays contain the derivatives
of the appropriate Coulomb or Bessel function
with respect to x.

If KFN=3, then H* are not defined, and
mod(MODEL, 10) is used in place of MODEI.

If KFN # 3, the use of KFN and MODE] is
independent.

IFAIL: integer on input
= 0 no printing of error messages,
# 0 print error messages on file 6;
on output
= 0 no errors occurred,
# 0 error exit.
The error exits are further classified:
IFAIL
= —2: argument out of range;

—1: one of the continued fractions failed or
arithmetic check, before any results
calculated;

= —3: the functions of A_, could not be

calculated (but perhaps some at A >
A

min )3
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Intrinsic functions :
(Generic names)

aNanNO0a0n00A0ACO0O0000000000

[

Machine dependent constants : C
[o]

ACCUR target bound on relative error (except near 0 croesings)C
(ACCUR should be at least 100 * ACCS8) [

ACC8 smallest number with !+ACC8 .ne.l in REAL*8 arithmetic C
ACCl6 smallest number with 1+ACCl6é.ne.l in REAL*16 arithmetic C
FPMAX magnitude of largest floating point number * ACCS c
FPMIN magnitude of smallest floating point number / ACCS8 C
FPLMAX LOG(FPMAX) c
FPLMIN LOG(FPMIN) c
[

ROUTINES CALLED : LOGAM/CLOGAM/CDIGAM, [
F20, CFlA, RCF, CF1C, CF2, Fl1, CFIR [

MIN, MAX, SQRT, REAL, IMAG, ABS, LOG, EXP,
NINT, MOD, ATAN, ATAN2, COS, SIN, DCMPLX,

SIGN, CONJG, INT, TANH c

Note: Statement fntn. NINTC = integer nearest to a complex no. C
c

Parameters determining region of calculations : [
c

R20 estimate of (2F0 iterations)/(CF2 iterations) C
ASYM minimum X/(ETA**2+L) for CFlA to converge easily [
XNEAR minimum ABS(X) for CF2 to converge accurately [
LIMIT maximum no. iterations for CFl, CF2, and 1F! series C
JMAX size of work arrays for Pade accelerations [
NDROP number of successive decrements to define instabilityC

[

CCCCCCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeee

Fig. 2. Machine dependent constants and subroutines used.

>0: arithmetic error during final recursion,
so that results are available in the FC,
etc., arrays up to and including position
NL - IFAIL;

= —4: roundoff errors > 4»/ACCUR.

The criterion for convergence of the internal
expansions is consistency to within one half of the
value of ‘ACCUR’ (see fig. 2). In the supplied
code, ACCUR is set at 1074, appropriate for
REAL *8 arithmetic on IBM machines. For CDC
6600,/7600 systems set ACCUR =10"12, and set
it also to 10~ !2 on CRAY machines. The ACCUR
value may be increased if these full accuracies are
not required, and if faster calculations would be
useful. If ACCUR is 1078 for example, then
(apart from the limiting cases described in section
4), the relative errors will be less than 40% of this
figure except near zero-crossings of the functions.
ACCUR is the target upper bound on the relative
errors in the results and is deliberately set at about
100 times the unit roundoff errors.

Further information about the performance of
COULCC is provided by a named common block
/STEED/ containing in order RERR(REAL *8)
and the integers NFP, N11, NPQ(2), N20, KAS(2).

RERR is the estimated maximum relative error
in the calculated Coulomb functions FC, GC. Then

NFP = number of iterations for CF1, or
- (number of terms for CF1A);

N11 = number of terms required for ,F
series;

NPQ(IH) = number of terms required for CF2*
or CF2~ for
IH =1 and 2, respectively;

N20 = number of terms required for ,F;
expansion;

KAS(1) = case number, 1, 2, 3, 4, 5 or 6 for

upper range of A values;
case number, 1, 2, 3, 4, 5 or 6 for
lower range of A values.

KAS(2)

The meanings of these case numbers are de-
fined in the accompanying paper [16].
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4. Accuracy and range of arguments

As a rule, the results are obtained within 2 or 3
decimals of machine precision, except for the fol-
lowing range limitations:

(a) negative A:
The code can still be used, but with reduced
accuracy as CF1 becomes unstable. The user is
thus strongly advised to use A-reflection for-
mulae based on

=H*_,exp ti(o)—0

(®) [Aiah ()| > 50:
The convergence of the ;F, series and of the
Padé-accelerated , F, expansions is now signifi-
cantly reduced and may become inaccurate.

(c) F-unstable cases:
In these cases CF1 cannot be used as the F
solution decreases (rather than increases or
oscillates) for a range of decreasing A, for
example for x = 100i and n = 50i. These, how-
ever, can only be detected if the number of
A-values required, NL > 6, and in severely un-
stable cases only if NL is large enough so that
the instability is nearly ended (in the above
example F is decreasing below A=y —nx).
Once the, instability is found, CF1A is used in
preference, but if this occurs for n too large
CF1A may not converge; this is the limitation
of the program.

The code only allows for one reversal of the
direction of recurrences because of instabili-
ties, so if negative A are also required the
A-reflection formulae will have to be used be-
fore and after calling COULCC. The presence
of poles (see(e)) also leads to reversals, so the
program cannot handle both poles and insta-
bilities, but should be called once for A=A,
to Im(n —1) and then for A=Im % up to
A o

(d) Small or medium x, if no REAL*16 arith-
metic is available for the | F; series calculation:
The partial sums in this series may be much
larger than the final result if 7 is large, or if x
is just below where asymptotic expansions may
be used. For complex Bessels (1 = 0) the error
would degrade up to 10° for x between 5 and
15.

e —(A+1/2)m).

(e) Near poles and zeros:
The relative accuracy is determined principally
by the accuracy with which the distance to the
pole or zero can be calculated in the floating-
point arithmetic. Poles and zeros are ap-
proached whenever 1l +A—inor1+A+inis
near a nonpositive integer, and there are the
usual zeros when real-valued functions change
sign, etc.

(f) Large x:
The oscillating phase is as sin(x), and the
accuracy in the results will decrease just
according to the accuracy in mod(x, 2m).

5. Subroutines used

COULCC calls the two routines CF1A and F20
as complex functions to use asymptotic expansions
to calculate the regular logarithmic derivative f=
F'/F and , F; values, respectively. If the expan-
sions start to diverge, the two routines call RCF to
calculate the corresponding continued fraction
coefficients. The RCF code is copied from table 9
of ref. [18], but with a modified restart procedure
and a change to complex variables.

The routines CF1R and CF1C calculate the
continued fraction CF1 for real and complex argu-
ments, respectively, while the function CF2
evaluates the complex continued fraction CF2.
The complex function F11 evaluates the ; F} series
for cases 1, 5 and 6, either in normal precision
(with COMPLEX*16 variables) or in doubled
precision (with REAL 16 variables). It can also
calculate the , Fy-like series with the digamma fac-
tors that appears in the logarithmic solution for
the irregular function.

The code uses a combined CLOGAM and
CDIGAM function to calculate the natural loga-
rithm and the logarithmic derivative of the gamma
function with complex argument, and with the cut
along the negative real axis. Initially we used
Kolbig’s program [19], but subsequently we gener-
alised his methods and his code for arbitrary preci-
sion, subject only to machine accuracy and not
subject to prestored floating point coefficients. In
the test deck this precision is pre-set by a call from
COULCC to the ENTRY LOGAM with one
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REAL %8 argument ACCUR. The gamma func-
tion results decrease worsen by one or two deci-
mals from machine accuracy in general, because of
the number of recurrence steps required for very
high accuracy calculations and the fixed collection
of Bernoulli numbers.

6. Test deck

The test deck contains a main program to call
COULCC for a succession of x, n and A combina-
tions determined by the data read in. The first 36
data cards are designed to reproduce published
results of existing Coulomb, Bessel and Whittaker
programs. The final set of 6 cards shows typical
error conditions that may result if the input ranges
are exceeded.
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TEST RUN OUTPUT

TEST OF THE CONTINUED=-FRACTION COULOMB & BESSEL ROUTINES
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